‒ Sử dụng toạ độ của vectơ \(\overrightarrow {AB} = \left( {{x_B} – {x_A};{y_B} – {y_A};{z_B} – {z_A}} \right)\). Giải và trình bày phương pháp giải Giải bài 10 trang 76 sách bài tập toán 12 – Chân trời sáng tạo – Bài 3. Biểu thức tọa độ của các phép toán vecto. Một nhân viên đang sử dụng phần mềm để thiết kế khung của một ngôi nhà trong không gian (Oxyz)…
Đề bài/câu hỏi:
Một nhân viên đang sử dụng phần mềm để thiết kế khung của một ngôi nhà trong không gian \(Oxyz\) được minh hoạ như Hình 3. Cho biết \(OABC.DEFH\) là hình hộp chữ nhật và \(EMF.DNH\) là hình lăng trụ đứng.
a) Tìm toạ độ của các điểm \(B,F,H\).
b) Tìm toạ độ của các vectơ \(\overrightarrow {ME} ,\overrightarrow {MF} \).
c) Tính số đo \(\widehat {EMF}\).
Hướng dẫn:
‒ Sử dụng toạ độ của vectơ \(\overrightarrow {AB} = \left( {{x_B} – {x_A};{y_B} – {y_A};{z_B} – {z_A}} \right)\).
‒ Sử dụng tính chất hai vectơ bằng nhau: Với \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\), ta có: \(\overrightarrow u = \overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2}\\{y_1} = {y_2}\\{z_1} = {z_2}\end{array} \right.\).
‒ Sử dụng công thức tính góc của hai vectơ \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\):
\(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}} = \frac{{{x_1}.{x_2} + {y_1}.{y_2} + {z_1}.{z_2}}}{{\sqrt {x_1^2 + y_1^2 + z_1^2} .\sqrt {x_2^2 + y_2^2 + z_2^2} }}\).
Lời giải:
a) Giả sử \(B\left( {{x_B};{y_B};{z_B}} \right)\). Ta có
\(\overrightarrow {OA} = \left( {6;0;0} \right),\overrightarrow {CB} = \left( {{x_B};{y_B} – 4;{z_B}} \right)\).
\(OABC\) là hình chữ nhật nên \(\overrightarrow {OA} = \overrightarrow {CB} \).
\( \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 6\\{y_B} – 4 = 0\\{z_B} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 6\\{y_B} = 4\\{z_B} = 0\end{array} \right.\). Vậy \(B\left( {6;4;0} \right)\).
Giả sử \(F\left( {{x_F};{y_F};{z_F}} \right)\). Ta có
\(\overrightarrow {A{\rm{E}}} = \left( {0;0;4} \right),\overrightarrow {BF} = \left( {{x_F} – 6;{y_F} – 4;{z_F}} \right)\).
\(ABF{\rm{E}}\) là hình chữ nhật nên \(\overrightarrow {A{\rm{E}}} = \overrightarrow {BF} \).
\( \Leftrightarrow \left\{ \begin{array}{l}{x_F} – 6 = 0\\{y_F} – 4 = 0\\{z_F} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 6\\{y_B} = 4\\{z_B} = 4\end{array} \right.\). Vậy \(F\left( {6;4;4} \right)\).
Giả sử \(H\left( {{x_H};{y_H};{z_H}} \right)\). Ta có
\(\overrightarrow {O{\rm{D}}} = \left( {0;0;4} \right),\overrightarrow {CH} = \left( {{x_H};{y_H} – 4;{z_H}} \right)\).
\(OCH{\rm{D}}\) là hình chữ nhật nên \(\overrightarrow {O{\rm{D}}} = \overrightarrow {CH} \).
\( \Leftrightarrow \left\{ \begin{array}{l}{x_H} = 0\\{y_H} – 4 = 0\\{z_H} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_H} = 0\\{y_H} = 4\\{z_H} = 4\end{array} \right.\). Vậy \(H\left( {0;4;4} \right)\).
b) \(\overrightarrow {ME} = \left( {6 – 6;0 – 2;4 – 6} \right) = \left( {0; – 2; – 2} \right),\overrightarrow {MF} = \left( {6 – 6;4 – 2;4 – 6} \right) = \left( {0;2; – 2} \right)\).
c) \(\cos \widehat {EMF} = \cos \left( {\overrightarrow {ME} ,\overrightarrow {MF} } \right) = \frac{{0.0 + \left( { – 2} \right).2 + \left( { – 2} \right).\left( { – 2} \right)}}{{\sqrt {{0^2} + {{\left( { – 2} \right)}^2} + {{\left( { – 2} \right)}^2}} .\sqrt {{0^2} + {2^2} + {{\left( { – 2} \right)}^2}} }} = 0\)
Vậy \(\widehat {EMF} = {90^ \circ }\).