Đáp án Câu hỏi Luyện tập 2 trang 90 SGK Toán 9 Kết nối tri thức – Bài 14. Cung và dây của một đường tròn. Tham khảo: Tính số đo các góc OCA và OCB, từ đó suy ra số đo cung \(\overset\frown{AC}\), \(\overset\frown{BC}\) và \(\overset\frown{ACB}\).
Câu hỏi/Đề bài:
Cho điểm C nằm trên đường tròn (O). Đường trung trực của đoạn OC cắt (O) tại A. Tính số đo của các cung \(\overset\frown{ACB}\) và \(\overset\frown{ABC}\).
Hướng dẫn:
– Tính số đo các góc OCA và OCB, từ đó suy ra số đo cung \(\overset\frown{AC}\), \(\overset\frown{BC}\) và \(\overset\frown{ACB}\).
-\(\overset\frown{ABC}\) là cung lớn có chung hai mút A, C với cung nhỏ \(\overset\frown{AC}\) nên sđ \(\overset\frown{ABC}=360{}^\circ -\) sđ\(\overset\frown{AC}\)
Lời giải:
AB là đường trung trực của AB của OC nên AC = OA (tính chất đường trung trực)
mà OA = OC = R nên AC = OA = OC
hay \(\Delta \,ACO\) là tam giác đều.
Do đó: \(\widehat{AOC}=60{}^\circ \) (tính chất của tam giác đều) \(\Rightarrow \) sđ \(\overset\frown{AC}=60{}^\circ \)
Tương tự ta có: sđ \(\overset\frown{BC}=60{}^\circ \)
Suy ra:
sđ \(\overset\frown{ACB}=\)sđ \(\overset\frown{AC}\) + sđ \(\overset\frown{BC}=60{}^\circ +60{}^\circ =120{}^\circ \)
\(\overset\frown{ABC}\) là cung lớn có chung hai mút A, C với cung nhỏ \(\overset\frown{AC}\)
nên sđ \(\overset\frown{ABC}=360{}^\circ -\) sđ\(\overset\frown{AC}=360{}^\circ -60{}^\circ =300{}^\circ \)