Trang chủ Lớp 9 Toán lớp 9 SGK Toán 9 - Cánh diều Bài tập 6 trang 87 Toán 9 tập 1 – Cánh diều:...

Bài tập 6 trang 87 Toán 9 tập 1 – Cánh diều: Tính độ dài đường gấp khúc ABCDEGH, biết các tam giác OAB, OBC, OCD, ODE, OEG, OGH là các tam giác vuông tại các đỉnh lần lượt là B, C, D, E, G, H; các góc O_1, O_2, O_3, O_4, O_5, O_6

Dựa vào các mối liên hệ giữa tỉ số lượng giác và các cạnh để giải bài toán. Giải chi tiết Giải bài tập 6 trang 87 SGK Toán 9 tập 1 – Cánh diều – Bài 2. Một số hệ thức về cạnh và góc trong tam giác vuông. Tính độ dài đường gấp khúc (ABCDEGH), biết các tam giác (OAB,OBC,OCD,ODE,OEG,…

Đề bài/câu hỏi:

Tính độ dài đường gấp khúc \(ABCDEGH\), biết các tam giác \(OAB,OBC,OCD,ODE,OEG,OGH\) là các tam giác vuông tại các đỉnh lần lượt là \(B,C,D,E,G,H\); các góc \({O_1},{O_2},{O_3},{O_4},{O_5},{O_6}\) đều bằng \(30^\circ \) và \(OA = 2cm\) (Hình 25).

Hướng dẫn:

Dựa vào các mối liên hệ giữa tỉ số lượng giác và các cạnh để giải bài toán.

Lời giải:

Xét tam giác \(ABO\) vuông tại \(B\), ta có:

+) \(AB = AO.\sin 30^\circ = 2.\sin 30^\circ = 1\left( {cm} \right)\).

+) \(BO = AO.\cos 30^\circ = 2.\cos 30^\circ = \sqrt 3 \left( {cm} \right)\).

Xét tam giác \(BOC\) vuông tại \(C\), ta có:

+) \(BC = BO.\sin 30^\circ = \sqrt 3 .\sin 30^\circ = \frac{{\sqrt 3 }}{2}\left( {cm} \right)\).

+) \(CO = BO.\cos 30^\circ = \sqrt 3 .\cos 30^\circ = \frac{3}{2}\left( {cm} \right)\).

Xét tam giác \(COD\) vuông tại \(D\), ta có:

+) \(CD = CO.\sin 30^\circ = \frac{3}{2}.\sin 30^\circ = \frac{3}{4}\left( {cm} \right)\).

+) \(DO = CO.\cos 30^\circ = \frac{3}{2}.\cos 30^\circ = \frac{{3\sqrt 3 }}{4}\left( {cm} \right)\).

Xét tam giác \(DOE\) vuông tại \(E\), ta có:

+) \(DE = DO.\sin 30^\circ = \frac{{3\sqrt 3 }}{4}.\frac{1}{2} = \frac{{3\sqrt 3 }}{8}\left( {cm} \right)\).

+) \(EO = DO.\cos 30^\circ = \frac{{3\sqrt 3 }}{4}.\frac{{\sqrt 3 }}{2} = \frac{9}{8}\left( {cm} \right)\).

Xét tam giác \(EOG\) vuông tại \(G\), ta có:

+) \(EG = EO.\sin 30^\circ = \frac{9}{8}.\frac{1}{2} = \frac{9}{{16}}\left( {cm} \right)\).

+) \(GO = EO.\cos 30^\circ = \frac{9}{8}.\frac{{\sqrt 3 }}{2} = \frac{{9\sqrt 3 }}{{16}}\left( {cm} \right)\).

Xét tam giác \(GOH\) vuông tại \(H\), ta có:

\(GH = GO.\sin 30^\circ = \frac{{9\sqrt 3 }}{{16}}.\frac{1}{2} = \frac{{9\sqrt 3 }}{{32}}\left( {cm} \right)\).

Vậy độ dài đường gấp khúc \(ABCDEGH\) là:

\(ABCDEGH = 1 + \frac{{\sqrt 3 }}{2} + \frac{3}{4} + \frac{{3\sqrt 3 }}{8} + \frac{9}{{16}} + \frac{{9\sqrt 3 }}{{32}} = \frac{{37\left( {2 + \sqrt 3 } \right)}}{{32}} \approx 4,3 \left( {cm} \right)\).