Rút gọn biểu thức bằng cách sử dụng hằng đẳng thức hiệu hai bình phương, bình phương của một tổng. Giải chi tiết Giải bài 6 trang 42 vở thực hành Toán 8 – Bài tập cuối Chương 2. Rút gọn các biểu thức:…
Đề bài/câu hỏi:
Rút gọn các biểu thức:
a) \(\left( {2x-5y} \right)\left( {2x + 5y} \right) + {\left( {2x + 5y} \right)^2}\).
b) \(\left( {x + 2y} \right)\left( {{x^2}\;-2xy + 4{y^2}} \right) + \left( {2x-y} \right)\left( {4{x^2}\; + 2xy + {y^2}} \right)\).
Hướng dẫn:
a) Rút gọn biểu thức bằng cách sử dụng hằng đẳng thức hiệu hai bình phương, bình phương của một tổng.
b) Rút gọn biểu thức bằng cách sử dụng hằng đẳng thức tổng và hiệu hai lập phương.
Lời giải:
a) Ta có \(\left( {2x-5y} \right)\left( {2x + 5y} \right) + {\left( {2x + 5y} \right)^2}\)
\(\begin{array}{*{20}{l}}{ = {{\left( {2x} \right)}^2}\;-{{\left( {5y} \right)}^{2\;}} + {{\left( {2x} \right)}^2}\; + 2.\left( {2x} \right).\left( {5y} \right) + {{\left( {5y} \right)}^2}}\\{ = 4{x^2}\;-25{y^2}\; + 4{x^2}\; + 20xy + 25{y^2}}\\{ = 8{x^2}\; + 20xy.}\end{array}\)
b) Ta có \(\left( {x + 2y} \right)\left( {{x^2}\;-2xy + 4{y^2}} \right) + \left( {2x-y} \right)\left( {4{x^2}\; + 2xy + {y^2}} \right)\)\(\begin{array}{l} = \left( {x + 2y} \right)\left[ {{x^2}\;-x.2y + {{\left( {2y} \right)}^2}} \right] + \left( {2x-y} \right)\left[ {{{\left( {2x} \right)}^2}\; + 2x.y + {y^2}} \right]\\ = {x^3}\; + {\left( {2y} \right)^3}\; + {\left( {2x} \right)^3}\;-{y^3}\\ = {x^3}\; + 8{y^3}\; + 8{x^3}\;-{y^3}\\ = 9{x^3}\; + 7{y^3}.\end{array}\)