Chứng minh tam giác vuông HDA (vuông tại D) và tam giác vuông AHC (vuông tại H) có: \(\widehat {DHA} = \widehat {HAC}\. Trả lời Giải bài 9.44 trang 111 SGK Toán 8 tập 2 – Kết nối tri thức – Bài tập cuối chương 9. Cho tam giác ABC vuông tại A có AB=5cm, AC=4cm….
Đề bài/câu hỏi:
Cho tam giác ABC vuông tại A có AB=5cm, AC=4cm. Gọi AH, HD lần lượt là các đường cao kẻ từ đỉnh A của tam giác ABC và đỉnh H của tam giác HAB a) Chứng minh rằng ΔHDA ∽ ΔAHC
b) Tính độ dài các đoạn thẳng HA, HB, HC, HD
Hướng dẫn:
a) Chứng minh tam giác vuông HDA (vuông tại D) và tam giác vuông AHC (vuông tại H) có: \(\widehat {DHA} = \widehat {HAC}\)
b) Áp dụng định lý Pythagore trong tam giác vuông để tính HA, HB, HC, HD
Lời giải:
a) Có AB ⊥ AC, HD ⊥ AB
Suy ra HD // AC
Suy ra \(\widehat {DHA} = \widehat {HAC}\)
– Xét tam giác vuông HDA (vuông tại D) và tam giác vuông AHC (vuông tại H) có: \(\widehat {DHA} = \widehat {HAC}\)
Suy ra ΔHDA ∽ ΔAHC
b) Xét tam giác ABC có: \(A{B^2} + A{C^2} = B{C^2}\)
mà AB=5cm, AC=4cm
Suy ra \(BC = \sqrt {41} \)
– Có AH.BC=AB.AC
Suy ra \(AH = \frac{{20\sqrt {41} }}{{41}}\)
Suy ra \(H{B^2} = A{B^2} – A{H^2}\) (áp dụng định lý Pythagore trong tam giác vuông BHA)
Suy ra \(HB = \frac{{25\sqrt {41} }}{{41}}\)
Suy ra \(HC = \frac{{16\sqrt {41} }}{{41}}\)
– Xét tam giác vuông BDH và tam giác vuông BAC có: HD // AC
Suy ra ΔBDH ∽ ΔBAC
Suy ra \(\frac{{BH}}{{BC}} = \frac{{DH}}{{AC}}\)
Suy ra \(H{\rm{D}} = \frac{{100}}{{41}}\)