Chứng minh ΔA′M′B′ ∽ ΔAMB rồi suy ra các tỉ số và tính AB. Lời giải Giải bài 9.28 trang 103 SGK Toán 8 tập 2 – Kết nối tri thức – Bài 36. Các trường hợp đồng dạng của hai tam giác vuông. Một người ở vị trí điểm A muốn đo khoảng cách đến điểm B ở bên kia sông…
Đề bài/câu hỏi:
Một người ở vị trí điểm A muốn đo khoảng cách đến điểm B ở bên kia sông mà không thể qua sông được. Sử dụng giác kế, người đó xác định được một điểm M trên bờ sông sao cho AM = 2 m, AM vuông góc với AB và đo được số đo góc AMB. Tiếp theo, người đó vẽ trên giấy tam giác A’M’B’ vuông tại A’ có AM’ = 1cm, \(\widehat {A’M’B’} = \widehat {AMB}\) và đo được A’B’ = 5 cm (H.9.56). Hỏi khoảng cách từ A đến B là bao nhiêu mét?
Hướng dẫn:
Chứng minh ΔA′M′B′ ∽ ΔAMB rồi suy ra các tỉ số và tính AB
Lời giải:
Xét ΔA′M′B′ (vuông tại A) và ΔAMB (vuông tại A’) có \(\widehat {A’M’B’} = \widehat {AMB}\)
=> ΔA′M′B′ ∽ ΔAMB
=> \(\frac{{A’M’}}{{AM}} = \frac{{A’B’}}{{AB}}\)
=> \(\frac{1}{2} = \frac{5}{{AB}}\)
=> AB=10 (m)