Giải Hoạt động 4 Bài 5. Phân thức đại số (trang 28, 29, 30) – SGK Toán 8 Chân trời sáng tạo. Tham khảo: Sử dụng kiến thức: \(\dfrac{A}{B}\) \( = \dfrac{C}{D}\) nếu \(AD = BC\.
Câu hỏi/Đề bài:
Xét các phân thức \(P = \dfrac{{{x^2}y}}{{x{y^2}}}\), \(Q = \dfrac{x}{y}\), \(R = \dfrac{{{x^2} + xy}}{{xy + {y^2}}}\) .
a) Các phân thức trên có bằng nhau không? Tại sao?
b) Có thể biến đổi như thế nào nếu chuyển \(Q\) thành \(P\) và \(R\) thành \(Q\).
Hướng dẫn:
a) Sử dụng kiến thức: \(\dfrac{A}{B}\) \( = \dfrac{C}{D}\) nếu \(AD = BC\) để kiểm tra xem các phân thức trên có bằng nhau hay không?
b) Nhân hoặc cả tử và mẫu của đa thức \(Q\) cho \(xy\); chia cả tử và mẫu của đa thức của \(R\) cho \(x + y\)
Lời giải:
a) Ta có:
\({x^2}y.y = {x^2}{y^2}\)
\(x{y^2}.x = {x^2}{y^2}\)
Do đó\({x^2}y.y = x{y^2}.x\)
Vậy \(P = Q\) (1)
Ta có:
\(x.\left( {xy + {y^2}} \right) = {x^2}y + x{y^2}\)
\(y.\left( {{x^2} + xy} \right) = {x^2}y + x{y^2}\)
Do đó \(x.\left( {xy + {y^2}} \right) = y.\left( {{x^2} + xy} \right)\)
Vậy \(Q = R\) (2)
Từ (1) và (2) suy ra \(P = Q = R\)
b) Nhân cả tử và mẫu của phân thức \(Q\) với \(xy\) để chuyển \(Q\) thành \(P\), ta được: \(Q = \dfrac{x}{y} = \dfrac{{x.xy}}{{y.xy}} = \dfrac{{{x^2}y}}{{x{y^2}}}\)
Phân thức cả tử và mẫu của phân thức \(R\) thành nhân tử rồi chia cả tử và mẫu của phân thức \(R\) cho nhân tử chung \(x + y\) để chuyển \(R\) thành \(Q\), ta được: \(R = \dfrac{{{x^2} + xy}}{{xy + {y^2}}} = \dfrac{{x.\left( {x + y} \right)}}{{y.\left( {x + y} \right)}} = \dfrac{{x.\left( {x + y} \right):\left( {x + y} \right)}}{{y.\left( {x + y} \right):\left( {x + y} \right)}} = \dfrac{x}{y}\)