Trả lời a) Bài 3. Hàm số bậc nhất y=ax+b(a≠0) (trang 22) – SGK Toán 8 Chân trời sáng tạo. Tham khảo: Bước 1: Xác định một điểm \(M\) trên đồ thị khác gốc tọa độ \(O\), chẳng hạn \(M\left( {1;a} \right)\).
Câu hỏi/Đề bài:
Vẽ đồ thị các hàm số sau đây trên cùng một mặt phẳng tọa độ:
\(y = x\); \(y = x + 2\); \(y = – x\) \(y = – x + 2\).
Hướng dẫn:
– Để vẽ đồ thị hàm số \(y = ax\), ta thường thực hiện các bước sau:
Bước 1: Xác định một điểm \(M\) trên đồ thị khác gốc tọa độ \(O\), chẳng hạn \(M\left( {1;a} \right)\).
Bước 2: Vẽ đường thẳng đi qua hai điểm \(O\) và \(M\). Đồ thị hàm số \(y = ax\) là đường thẳng đi qua hai điểm \(O\) và \(M\).
– Để vẽ đồ thị hàm số \(y = ax + b\) ta làm như sau:
Bước 1: Cho \(x = 0 \Rightarrow y = b\) ta được điểm \(A\left( {0;b} \right)\) trên trục \(Oy\).
Cho \(y = 0 \Rightarrow x = \dfrac{{ – b}}{a}\) ta được điểm \(B\left( {\dfrac{{ – b}}{a};0} \right)\) trên \(Ox\).
Bước 2: Vẽ đường thẳng đi qua hai điểm \(A\) và \(B\). Đồ thị của hàm số \(y = ax + b\) là đường thẳng đi qua hai điểm \(A\) và \(B\).
– Đồ thị hàm số \(y = ax + b\) là một đường thẳng và song song với đường thẳng \(y = ax\).
Lời giải:
– Vẽ đồ thị hàm số \(y = x\)
Cho \(x = 1 \Rightarrow y = 1\)\( \Rightarrow \) đồ thị hàm số đi qua điểm \(A\left( {1;1} \right)\).
Đồ thị hàm số \(y = x\)là đường thẳng đi qua hai điểm \(O\left( {0;0} \right)\) và \(A\left( {1;1} \right)\).
– Vẽ đồ thị hàm số \(y = x + 2\)
Cho \(x = 0 \Rightarrow y = 2\) ta được điểm \(B\left( {0;2} \right)\) trên trục \(Oy\).
Cho \(y = 0 \Rightarrow x = – 2\) ta được điểm \(M\left( { – 2;0} \right)\) trên \(Ox\).
Đồ thị hàm số\(y = x + 2\)là đường thẳng đi qua hai điểm \(B\left( {0;2} \right)\) và \(M\left( { – 2;0} \right)\).
– Vẽ đồ thị hàm số \(y = – x\)
Cho \(x = 1 \Rightarrow y = – 1\)\( \Rightarrow \) đồ thị hàm số đi qua điểm \(C\left( {1; – 1} \right)\).
Đồ thị hàm số \(y = – x\) là đường thẳng đi qua hai điểm \(O\left( {0;0} \right)\) và \(C\left( {1; – 1} \right)\).
– Vẽ đồ thị hàm số \(y = – x + 2\)
Cho \(x = 0 \Rightarrow y = 2\) ta được điểm \(B\left( {0;2} \right)\) trên trục \(Oy\).
Cho \(y = 0 \Rightarrow x = 2\) ta được điểm \(N\left( {2;0} \right)\) trên \(Ox\).
Đồ thị hàm số \(y = – x + 2\) là đường thẳng đi qua hai điểm \(B\left( {0;2} \right)\) và \(N\left( {2;0} \right)\).