Tính diện tích hình tam giác vuông ban đầu Tính diện tích hình tam giác vuông sau khi tăng độ dài Đa thức biểu thị. Trả lời Giải bài 6 trang 17 SGK Toán 8 tập 1 – Cánh diều – Bài 2. Các phép tính với đa thức nhiều biến. Bạn Hạnh dự định cắt một miếng bìa có dạng tam giác vuông với độ dài hai cạnh góc vuông…
Đề bài/câu hỏi:
Bạn Hạnh dự định cắt một miếng bìa có dạng tam giác vuông với độ dài hai cạnh góc vuông lần lượt là 6 (cm), 8 (cm). Sau khi xem xét lại, bạn Hạnh quyết định tăng độ dài cạnh góc vuông 6 (cm) thêm x (cm) và tăng độ dài cạnh góc vuông 8 (cm) thêm y(cm) (hình 2). Viết đa thức biểu thị diện tích phần tăng thêm của miếng bìa theo x và y.
Hướng dẫn:
– Tính diện tích hình tam giác vuông ban đầu
– Tính diện tích hình tam giác vuông sau khi tăng độ dài
Đa thức biểu thị phần diện tích tăng thêm bằng diện tích tam giác sau khi tăng trừ đi diện tích tam giác vuông ban đầu.
Lời giải:
Diện tích hình tam giác vuông ban đầu là: \(\dfrac{1}{2}.6.8 = 24\left( {c{m^2}} \right)\)
Độ dài các cạnh của hình vuông sau khi tăng độ dài là: x + 6 (cm); y + 8 (cm)
Diện tích tam giác vuông sau khi tăng độ dài là: \(\dfrac{1}{2}\left( {x + 6} \right).\left( {y + 8} \right) = \dfrac{{{xy}}}{2} + 4x + 3y + 24\left( {c{m^2}} \right)\)
Đa thức biểu thị phần diện tích tăng thêm của miếng bìa là: \(\dfrac{{{xy}}}{2} + 4x + 3y + 24 – 24 = \dfrac{{{xy}}}{2} + 4x + 3y\left( {c{m^2}} \right)\)
Vậy đa thức biểu thị phần diện tích tăng thêm của miếng bìa là: \(\dfrac{{{xy}}}{2} + 4x + 3y\left( {c{m^2}} \right)\)