Giải Đề bài Đề thi giữa kì 2 – Đề số 4 – Đề thi đề kiểm tra Toán lớp 7 Cánh diều.
Câu hỏi/Đề bài:
I. TRẮC NGHIỆM ( 2 điểm)
Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.
Câu 1. Một cửa hàng bán nước hoa quả đã khảo sát về các loại nước mà khách hàng ưa chuộng và thu được bảng dữ liệu sau:
Loại nước uống |
Nước cam |
Nước dứa |
Nước chanh |
Nước ổi |
Số người chọn |
\(12\) |
\(8\) |
\(17\) |
\(10\) |
Loại nước nào ít người ưa chuộng nhất?
A. Nước cam B. Nước dứa C. Nước chanh D. Nước ổi
Câu 2. Biểu thức đại số biểu thị bình phương của một tổng hai số \(a\) và \(b\) là:
A. \({a^2} – {b^2}\) B. \({a^2} + {b^2}\) C. \({\left( {a – b} \right)^2}\) D. \({\left( {a + b} \right)^2}\)
Câu 3. Giá trị của biểu thức: \({x^3} – 2{x^2}\) tại \(x = – 2\) là:
A. \( – 16\) B. \(16\) C. \(0\) D. \( – 8\)
Câu 4. Biểu thức nào sau đây không là đơn thức?
A. \(4{x^2}y\left( { – 2x} \right)\) B. \(2x\) C. \(2xy – {x^2}\) D. \(2021\)
Câu 5. Sắp xếp các hạng tử của đa thức \(P\left( x \right) = 2{x^3} – 7{x^2} + {x^4} – 4\) theo lũy thừa giảm dần của biến ta được:
A. \(P\left( x \right) = {x^4} + 2{x^3} – 7{x^2} – 4\) B. \(P\left( x \right) = 7{x^2} + 2{x^3} + {x^4} – 4\)
C. \(P\left( x \right) = – 4 – 7{x^2} + 2{x^3} + {x^4}\) D. \(P\left( x \right) = {x^4} – 2{x^3} – 7{x^2} – 4\)
Câu 6. Cho tam giác \(MNP\) có \(NP = 1cm,MP = 7cm\). Độ dài cạnh \(MN\) là một số nguyên (cm). Độ dài cạnh \(MN\) là:
A. \(8cm\) B. \(5cm\) C. \(6cm\) D. \(7cm\)
Câu 7. Cho tam giác \(ABC\), có \(\angle A = {90^0};\angle C = {30^0}\). Khi đó quan hệ giữa ba cạnh \(AB,AC,BC\) là:
A. \(BC > AB > AC\) B. \(AC > AB > BC\) C. \(AB > AC > BC\) D. \(BC > AC > AB\)
Câu 8. Giao điểm của 3 đường trung trực của tam giác
A. cách đều 3 cạnh của tam giác.
B. được gọi là trực tâm của tam giác.
C. cách đều 3 đỉnh của tam giác.
D. cách đỉnh một đoạn bằng \(\dfrac{2}{3}\) độ dài đường trung tuyến đi qua đỉnh đó.
II. PHẦN TỰ LUẬN (8,0 điểm)
Bài 1.
Biểu đồ hình quạt tròn bên dưới biểu diễn kết quả thống kê (tính theo tỉ số phần trăm) lực lượng lao động (từ 15 tuổi trở lên) phân theo trình độ chuyên môn kĩ thuật (CMKT) của nước ta (năm 2020).
a) Trong năm 2020, có bao nhiêu phần trăm lực lượng lao động không có trình độ CMKT? Trình độ sơ cấp? Trình độ trung cấp? Trình độ cao đẳng? Trình độ đại học trở lên?
b) Trong năm 2020, lực lượng lao động không có trình độ CMKT gấp bao nhiêu lần lực lượng lao động có trình độ đại học trở lên (làm tròn đến hàng đơn vị)?
c) Số lao động có trình độ đại học trở lên năm 2020 là bao nhiêu triệu người, biết có 54,6 triệu người từ 15 tuổi trở lên thuộc lực lượng lao động của cả nước trong năm 2020 (làm tròn kết quả đến hàng phần trăm)?
Bài 3. (2 điểm) Cho hai đa thức: \(f\left( x \right) = {x^5} + {x^3} – 4x – {x^5} + 3x + 7\) và \(g\left( x \right) = 3{x^2} – {x^3} + 8x – 3{x^2} – 14\).
a) Thu gọn và sắp xếp hai đa thức \(f\left( x \right)\) và \(g\left( x \right)\) theo lũy thừa giảm dần của biến.
b) Tính \(f\left( x \right) + g\left( x \right)\) và tìm nghiệm của đa thức \(f\left( x \right) + g\left( x \right)\).
Bài 4. (3,5 điểm) Cho tam giác \(ABC\) cân tại \(A\), kẻ \(AH\)vuông góc với \(BC\)\(\left( {H \in BC} \right)\). Gọi \(P\) là trung điểm của \(HC\). Trên tia đối của tia \(PA\) lấy điểm \(Q\) sao cho \(QP = PA\).
a) Chứng minh rằng: \(\Delta APH = \Delta QPC\) và \(QC\) vuông góc với\(BC\).
b) Chứng minh rằng: \(QC = AH\)từ đó suy ra \(AC > QC\).
c) Chứng minh rằng: \(\angle PAC < \angle HAP\)
d) Gọi \(I\) là trung điểm của \(BQ\). Chứng minh rằng ba điểm \(A,H,I\) thẳng hàng.
Bài 5. (0,5 điểm) Cho các số thực \(a,b,c,d,e\) thỏa mãn: \(\dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d} = \dfrac{d}{e}\).
Chứng minh rằng: \({\left( {\dfrac{{2019b + 2020c – 2021d}}{{2019c + 2020d – 2021e}}} \right)^3} = \dfrac{{{a^2}}}{{bc}}\).
(Giả thiết các tỉ số đều có nghĩa)