Trang chủ Lớp 12 Toán lớp 12 SGK Toán 12 - Kết nối tri thức Bài tập 1.25 trang 32 Toán 12 tập 1 – Kết nối...

Bài tập 1.25 trang 32 Toán 12 tập 1 – Kết nối tri thức: Trong Vật lí, ta biết rằng khi mắc song song hai điện trở R_1 và R_2

Sử dụng kiến thức về sơ đồ khảo sát hàm số phân thức để khảo sát và vẽ đồ thị hàm số. Trả lời Giải bài tập 1.25 trang 32 SGK Toán 12 tập 1 – Kết nối tri thức – Bài 4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số. Trong Vật lí, ta biết rằng khi mắc song song hai điện trở \({R_1}\) và \({R_2}\…

Đề bài/câu hỏi:

Trong Vật lí, ta biết rằng khi mắc song song hai điện trở \({R_1}\) và \({R_2}\) thì điện trở tương đương R của mạch điện được tính theo công thức \(R = \frac{{{R_1}{R_2}}}{{{R_1} + {R_2}}}\) (theo Vật lí đại cương, NXB Giáo dục Việt Nam, 2016).

Giả sử một điện trở \(8\Omega \) được mắc song song với một biến trở như Hình 1.33. Nếu điện trở đó được kí hiệu là \(x\left( \Omega \right)\) thì điện trở tương đương R là hàm số của x. Vẽ đồ thị của hàm số \(y = R\left( x \right),x > 0\) và dựa vào đồ thị đã vẽ, hãy cho biết:

a) Điện trở tương đương của mạch thay đổi thế nào khi x tăng.

b) Tại sao điện trở tương đương của mạch không bao giờ vượt quá \(8\Omega \).

Hướng dẫn:

Sử dụng kiến thức về sơ đồ khảo sát hàm số phân thức để khảo sát và vẽ đồ thị hàm số:

Sơ đồ khảo sát hàm số phân thức

1. Tìm tập xác định của hàm số.

2. Khảo sát sự biến thiên của hàm số:

+ Tính đạo hàm y’. Tìm các điểm tại đó y’ bằng 0 hoặc đạo hàm không tồn tại.

+ Xét dấu y’ để chỉ ra các khoảng đơn điệu của hàm số.

+ Tìm cực trị của hàm số.

+ Tìm các giới hạn tại vô cực, giới hạn vô cực và tìm tiệm cận của đồ thị hàm số.

+ Lập bảng biến thiên của hàm số.

3. Vẽ đồ thị của hàm số dựa vào bảng biến thiên.

Lời giải:

Khi một điện trở \(8\Omega \) được mắc song song với một biến trở \(x\left( \Omega \right)\) thì điện trở tương đương của mạch là: \(R\left( x \right) = \frac{{8x}}{{x + 8}}\left( \Omega \right)\)

Vẽ đồ thị hàm số \(y = R\left( x \right) = \frac{{8x}}{{x + 8}}\) với \(x > 0\).

1. Tập xác định của hàm số: \(\left( {0; + \infty } \right)\)

2. Sự biến thiên:

\(R’\left( x \right) = \frac{{64}}{{{{\left( {x + 8} \right)}^2}}} > 0\forall x > 0\)

Hàm số đồng trên \(\left( {0; + \infty } \right)\).

Hàm số không có cực trị.

\(\mathop {\lim }\limits_{x \to + \infty } R\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{8x}}{{x + 8}} = 8\).

Do đó, đồ thị hàm số \(y = R\left( x \right) = \frac{{8x}}{{x + 8}}\) với \(x > 0\) nhận đường thẳng \(y = 8\) làm tiệm cận ngang (phần bên phải trục Oy).

Bảng biến thiên:

3. Đồ thị:

Giao điểm của đồ thị hàm số với trục tung là (0; 0).

Đồ thị hàm số \(y = R\left( x \right) = \frac{{8x}}{{x + 8}}\) đi qua các điểm (8; 4); \(\left( {12;\frac{{24}}{5}} \right)\).

a) Vì \(R’\left( x \right) = \frac{{64}}{{{{\left( {x + 8} \right)}^2}}} > 0\forall x > 0\) nên khi x tăng thì điện trở tương đương của mạch tăng.

b) Vì \(R’\left( x \right) = \frac{{64}}{{{{\left( {x + 8} \right)}^2}}} > 0\forall x > 0\) và \(\mathop {\lim }\limits_{x \to + \infty } R\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{8x}}{{x + 8}} = 8\) nên điện trở tương đương của mạch không bao giờ vượt quá \(8\Omega \).