B1: Tìm các điểm \({x_1}, {x_2}, . . . , {x_n}\) thuộc khoảng \(\left( {a;b} \right)\. Lời giải bài tập, câu hỏi Giải bài tập 7 trang 20 SGK Toán 12 tập 1 – Cánh diều – Bài 2. Tính đơn điệu của hàm số. Ho ép khí quản co lại, ảnh hưởng đến tốc độ của không khí đi vào khí quản….
Đề bài/câu hỏi:
Ho ép khí quản co lại, ảnh hưởng đến tốc độ của không khí đi vào khí quản. Tốc độ của không khí đi vào khí quản khi ho được cho bởi công thức:
\(V = k\left( {R – r} \right){r^2}\) với \(0 \le r < R\)
Trong đó k là hằng số, R là bán kính bình thường của khí quan, r là bán kính khu quản khi ho. Hỏi bán kính của khí quản khi ho bằng bao nhiêu thì tốc độ của không khí đi vào khí quản là lớn nhất ?
Hướng dẫn:
B1: Tìm các điểm \({x_1},{x_2},…,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.
B2: Tính \(f\left( {{x_1}} \right),f\left( {{x_2}} \right),…,f\left( {{x_n}} \right),f\left( a \right),f\left( b \right)\)
B3: So sánh các giá trị tìm được ở bước 2 và kết luận
Lời giải:
Ta có: \(V’ = 2kRr – 3k{r^2}\).
Nhận xét \(V’ = 0 \Leftrightarrow \left[ \begin{array}{l}r = 0\\r = \frac{{2R}}{3}\end{array} \right.\).
Ta có \(f\left( 0 \right) = 0;f\left( {\frac{{2R}}{3}} \right) = \frac{{4k{R^3}}}{{27}}\)
Vậy bán kính của khí quản khi ho bẳng \(\frac{2}{3}\) bán kính khí quản lúc bình thường thì tốc độ không khí đi vào là lớn nhất.