Trang chủ Lớp 12 Toán lớp 12 SBT Toán 12 - Chân trời sáng tạo Bài 11 trang 18 SBT toán 12 – Chân trời sáng tạo:...

Bài 11 trang 18 SBT toán 12 – Chân trời sáng tạo: Trong một ngày, tổng chi phí để một xưởng sản xuất x\

Lập công thức tính lợi nhuận \(P\left( x \right)\), sau đó tìm giá trị lớn nhất của hàm số \(P\left( x \right)\). Lời giải bài tập, câu hỏi Giải bài 11 trang 18 sách bài tập toán 12 – Chân trời sáng tạo – Bài 2. Giá trị lớn nhất – giá trị nhỏ nhất của hàm số. Trong một ngày, tổng chi phí để một xưởng sản xuất \(x\…

Đề bài/câu hỏi:

Trong một ngày, tổng chi phí để một xưởng sản xuất \(x\) (kg) thành phẩm được cho bởi hàm số \(C\left( x \right) = 2{x^3} – 30{x^2} + 177x + 2592\) (nghìn đồng). Biết giá bán mỗi kilôgam thành phẩm là 513 nghìn đồng và công suất tối đa của xưởng là 20 kg trong một ngày. Khối lượng thành phẩm xưởng nên sản xuất trong một ngày là bao nhiêu để lợi nhuận thu được của xưởng trong một ngày là cao nhất?

Hướng dẫn:

Lập công thức tính lợi nhuận \(P\left( x \right)\), sau đó tìm giá trị lớn nhất của hàm số \(P\left( x \right)\).

Lời giải:

Tổng số tiền bán sản phẩm của xưởng là: \(513{\rm{x}}\) (nghìn đồng)

Lợi nhuận thu được của xưởng là:

\(P\left( x \right) = 513{\rm{x}} – C\left( x \right) = 513{\rm{x}} – \left( {2{x^3} – 30{x^2} + 177x + 2592} \right) = – 2{x^3} + 30{x^2} + 336x – 2592\)

Xét hàm số \(P\left( x \right) = – 2{x^3} + 30{x^2} + 336x – 2592\) trên đoạn \(\left[ {0;20} \right]\).

Ta có:

\(P’\left( x \right) = – 6{x^2} + 60x + 336\)

\(P’\left( x \right) = 0 \Leftrightarrow x = 14\) hoặc \(x = – 4\) (loại)

\(P\left( 0 \right) = – 2592;P\left( {14} \right) = 2504;P\left( {20} \right) = 128\)

Vậy \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).

Vậy khối lượng thành phẩm xưởng nên sản xuất trong một ngày là 14 kg để lợi nhuận thu được của xưởng trong một ngày là cao nhất.