Trang chủ Lớp 12 Toán lớp 12 SBT Toán 12 - Cánh diều Bài 62 trang 26 SBT toán 12 – Cánh diều: Trong mỗi...

Bài 62 trang 26 SBT toán 12 – Cánh diều: Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số y = x^2 – 3/ – x – 1

‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ – } f\left( x \right)\. Trả lời Giải bài 62 trang 26 sách bài tập toán 12 – Cánh diều – Bài 3. Đường tiệm cận của đồ thị hàm số. Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S)….

Đề bài/câu hỏi:

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).

Cho hàm số \(y = \frac{{{x^2} – 3}}{{ – x – 1}}\).

a) Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = – 1\).

b) Đồ thị hàm số có tiệm cận ngang là đường thẳng \(y = – 1\).

c) Đồ thị hàm số có tiệm cận xiên là đường thẳng \(y = – x\).

d) Giao điểm \(I\) của hai đường tiệm cận của đồ thị hàm số là \(I\left( { – 1;1} \right)\).

Hướng dẫn:

‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ – } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn:

\(\mathop {\lim }\limits_{x \to x_0^ – } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ – } f\left( x \right) = – \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = – \infty \)

thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.

‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to – \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.

‒ Tìm tiệm cận xiên \(y = ax + b\left( {a \ne 0} \right)\):

\(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) – ax} \right]\) hoặc

\(a = \mathop {\lim }\limits_{x \to – \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to – \infty } \left[ {f\left( x \right) – ax} \right]\)

Lời giải:

Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ { – 1} \right\}\).

Ta có:

• \(\mathop {\lim }\limits_{x \to – {1^ – }} f\left( x \right) = \mathop {\lim }\limits_{x \to – {1^ – }} \frac{{{x^2} – 3}}{{ – x – 1}} = – \infty ;\mathop {\lim }\limits_{x \to – {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to – {1^ + }} \frac{{{x^2} – 3}}{{ – x – 1}} = + \infty \)

Vậy \(x = – 1\) là tiệm cận đứng của đồ thị hàm số đã cho. Vậy a) đúng.

• \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} – 3}}{{ – x – 1}} = – \infty ;\mathop {\lim }\limits_{x \to – \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to – \infty } \frac{{{x^2} – 3}}{{ – x – 1}} = + \infty \)

Vậy hàm số không có tiệm cận ngang. Vậy b) sai.

• \(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} – 3}}{{x\left( { – x – 1} \right)}} = – 1\) và

\(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + x} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{{{x^2} – 3}}{{ – x – 1}} + x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{ – x – 3}}{{ – x – 1}} = 1\)

Vậy đường thẳng \(y = – x + 1\) là tiệm cận xiên của đồ thị hàm số đã cho. Vậy c) sai.

Do đó, giao điểm của hai đường tiệm cận là \(I\left( { – 1;2} \right)\). Vậy d) sai.

a) Đ.

b) S.

c) S.

d) S.