Hướng dẫn giải Luyện tập, vận dụng 2 Bài 2. Giới hạn của hàm số (trang 66, 67, 68, 69) – SGK Toán 11 Cánh diều. Gợi ý: Sử dụng định lí về phép toán trên giới hạn hữu hạn của hàm số.
Câu hỏi/Đề bài:
Tính:
a) \(\mathop {\lim }\limits_{x \to 2} \left[ {\left( {x + 1} \right)\left( {{x^2} + 2x} \right)} \right];\)
b) \(\mathop {\lim }\limits_{x \to 2} \sqrt {{x^2} + x + 3} .\)
Hướng dẫn:
Sử dụng định lí về phép toán trên giới hạn hữu hạn của hàm số
Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\)và \(\mathop {\lim }\limits_{x \to {x_0}} g(x) = M\)\(\left( {L,M \in \mathbb{R}} \right)\)thì
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x) \pm g(x)} \right] = L \pm M\)
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x).g(x)} \right] = L.M\)
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {\frac{{f(x)}}{{g(x)}}} \right] = \frac{L}{M}\left( {M \ne 0} \right)\)
Nếu \(f(x) \ge 0\)với mọi \(x \in \left( {a;b} \right)\backslash \left\{ {{x_0}} \right\}\) và \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) thì \(L \ge 0\)và \(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f(x)} = \sqrt L \).
Lời giải:
a) \(\mathop {\lim }\limits_{x \to 2} \left[ {\left( {x + 1} \right)\left( {{x^2} + 2x} \right)} \right] = \mathop {\lim }\limits_{x \to 2} \left( {x + 1} \right).\mathop {\lim }\limits_{x \to 2} \left( {{x^2} + 2x} \right) = \left( {2 + 1} \right).\left( {{2^2} + 2.2} \right) = 24\)
b) \(\mathop {\lim }\limits_{x \to 2} \sqrt {{x^2} + x + 3} = \sqrt {\mathop {\lim }\limits_{x \to 2} \left( {{x^2} + x + 3} \right)} = \sqrt {\mathop {\lim }\limits_{x \to 2} {x^2} + \mathop {\lim }\limits_{x \to 2} x + \mathop {\lim }\limits_{x \to 2} 3} = \sqrt {{2^2} + 2 + 3} = 3\)