Trang chủ Lớp 11 Toán lớp 11 SGK Toán 11 - Cánh diều Hoạt động 2 Bài 2 (trang 66, 67, 68, 69) Toán 11:...

Hoạt động 2 Bài 2 (trang 66, 67, 68, 69) Toán 11: Cho hai hàm số fx = x^2 – 1, gx = x + a) Tính mathop lim limits_x -> 1 fx

Trả lời Hoạt động 2 Bài 2. Giới hạn của hàm số (trang 66, 67, 68, 69) – SGK Toán 11 Cánh diều. Tham khảo: \(\mathop {\lim }\limits_{x \to {x_0}} x = {x_0};\mathop {\lim }\limits_{x \to {x_0}} c = c\.

Câu hỏi/Đề bài:

Cho hai hàm số \(f\left( x \right) = {x^2} – 1,g\left( x \right) = x + 1.\)

a) Tính \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) và \(\mathop {\lim }\limits_{x \to 1} g\left( x \right).\)

b) Tính \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right]\)và so sánh \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right).\)

c) Tính \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) – g\left( x \right)} \right]\)và so sánh \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) – \mathop {\lim }\limits_{x \to 1} g\left( x \right).\)

d) Tính \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right]\)và so sánh \(\mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right).\)

e) Tính \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}}\)và so sánh \(\frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}}.\)

Hướng dẫn:

\(\mathop {\lim }\limits_{x \to {x_0}} x = {x_0};\mathop {\lim }\limits_{x \to {x_0}} c = c\)

Lời giải:

a) \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} – 1} \right) = \mathop {\lim }\limits_{x \to 1} {x^2} – \mathop {\lim }\limits_{x \to 1} 1 = {1^2} – 1 = 0\)

\(\mathop {\lim }\limits_{x \to 1} g\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( {x + 1} \right) = \mathop {\lim }\limits_{x \to 1} x + \mathop {\lim }\limits_{x \to 1} 1 = 1 + 1 = 2\)

b) \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} + x} \right) = {1^2} + 1 = 2\\\mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0 + 2 = 2\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right).\end{array}\)

c) \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) – g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} – x – 2} \right) = {1^2} – 1 – 2 = – 2\\\mathop {\lim }\limits_{x \to 1} f\left( x \right) – \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0 – 2 = – 2\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) – g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right) – \mathop {\lim }\limits_{x \to 1} g\left( x \right).\end{array}\)

d) \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} \left[ {\left( {{x^2} – 1} \right)\left( {x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to 1} \left( {{x^3} + {x^2} – x – 1} \right) = {1^3} + {1^2} – 1 – 1 = 0\\\mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0.2 = 0\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right).\end{array}\)

e) \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} – 1}}{{x + 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x – 1} \right)\left( {x + 1} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to 1} \left( {x – 1} \right) = 1 – 1 = 0\\\frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}} = \frac{0}{2} = 0\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}}.\end{array}\)