Áp dụng định nghĩa biến cố hợp, biến cố giao. Hướng dẫn trả lời Giải bài 8.3 trang 46 sách bài tập toán 11 – Kết nối tri thức với cuộc sống – Bài 28. Biến cố hợp – biến cố giao – biến cố độc lập. Có bốn chiếc hộp I, II, III, IV mỗi hộp đựng 10 tấm thẻ, đánh số từ 1 đến 10….
Đề bài/câu hỏi:
Có bốn chiếc hộp I, II, III, IV mỗi hộp đựng 10 tấm thẻ, đánh số từ 1 đến 10. Từ mỗi hộp rút ngẫu nhiên một tấm thẻ. Gọi \(a,b,c,d\) là số ghi trên thẻ tương ứng rút từ I, II, III, IV.
Xét các biến cố sau:
A: “\(a\) là số chẵn”; \(B\): “\(b\) là số chẵn”; \(C\): “\(c\) là số chẵn”; \(D\): “\(d\) là số chẵn”;
Chứng tỏ rằng:
a) \(E = \bar A\bar D;F = \bar B\bar C\);
b) \(G = EF \cup \bar E\bar F\).
Hướng dẫn:
Áp dụng định nghĩa biến cố hợp, biến cố giao
Lời giải:
a) \(ad\)là số lẻ khi và chỉ khi cả \(a\) và \(d\) đều là số lẻ, tức là không xảy ra cả biến cố \(A\) và \(D\). Vậy \(E = \bar A\bar D.\)
Tương tự \(bc\)là số lẻ chỉ khi cả \(b\) và \(c\) đều là số lẻ, tức là không xảy ra cả biến cố \(B\) và \(C\). Vậy \(F = \bar B\bar C\).
b) Giả sử \(G\) xảy ra, tức là \(ad\)và \(bc\)có cùng tính chẵn, lẻ. Nếu \(ad\)là số lẻ, \(bc\)là số lẻ thì \(E\) và \(F\) đều xảy ra. Do đó \(EF\)xảy ra.
Nếu \(ad\) là số chẵn, \(bc\)là số chẵn thì \(E\) và \(F\) đều không xảy ra. Do đó \(\bar E\bar F\) xảy ra.
Ngược lại, nếu \(EF\)xảy ra thì \(ad\)là số lẻ, \(bc\)là số lẻ. Suy ra \(ad – bc\) là số chẵn.
Nếu \(\bar E\bar F\) xảy ra thì \(ad\)là số chẵn, \(bc\)là số chẵn. Do đó \(ad – bc\) là số chẵn.
Vậy \(G = EF \cup \bar E\bar F\).