Trang chủ Lớp 11 Toán lớp 11 SBT Toán 11 - Chân trời sáng tạo Bài 3 trang 122 SBT toán 11 – Chân trời sáng tạo...

Bài 3 trang 122 SBT toán 11 – Chân trời sáng tạo tập 1: Cho hình chóp S. ABCD có đáy ABCD là một hình bình hành. Gọi G là trọng tâm của tam giác SAB

Sử dụng kiến thức về điều kiện để một đường thẳng song song với một mặt phẳng để chứng minh. Giải chi tiết Giải bài 3 trang 122 sách bài tập toán 11 – Chân trời sáng tạo tập 1 – Bài 3. Đường thẳng và mặt phẳng song song. Cho hình chóp S. ABCD có đáy ABCD là một hình bình hành….

Đề bài/câu hỏi:

Cho hình chóp S. ABCD có đáy ABCD là một hình bình hành. Gọi G là trọng tâm của tam giác SAB, I là trung điểm của AB và M là điểm thuộc cạnh AD sao cho \(AM = \frac{1}{3}AD\). Đường thẳng đi qua M và song song với AB cắt CI tại N. Chứng minh:

a) NG//(SCD);

b) MG//(SCD).

Hướng dẫn:

Sử dụng kiến thức về điều kiện để một đường thẳng song song với một mặt phẳng để chứng minh: Nếu đường thẳng a không nằm trong mặt phẳng (P) và song song với một đường thẳng b nào đó nằm trong (P) thì a song song với (P).

Lời giải:

a) Gọi F là giao điểm của MN và BC.

Ta có: MN//AB, suy ra NF//BI (vì F thuộc MN, I thuộc AB)

Tam giác CIB có: NF//BI nên theo định lí Thalès ta có: \(\frac{{IN}}{{IC}} = \frac{{BF}}{{BC}}\) (1)

Mặt khác, \(AM = \frac{1}{3}AD \Rightarrow \frac{{AM}}{{AD}} = \frac{1}{3}\)

Lại có MF///AB//DC nên \(\frac{{BF}}{{CB}} = \frac{{AM}}{{AD}} = \frac{1}{3}\) (2)

Từ (1) và (2) ta có: \(\frac{{NI}}{{CI}} = \frac{{BF}}{{BC}} = \frac{1}{3}\)

Vì G là trọng tâm của tam giác SAB nên \(\frac{{IG}}{{IS}} = \frac{1}{3}\)

Tam giác SIC có: \(\frac{{GI}}{{SI}} = \frac{{NI}}{{CI}} = \frac{1}{3}\) nên GN//SC (định lí Thalès đảo)

Vì GN//SC, \(SC \subset \left( {SDC} \right)\), GN không nằm trong mặt phẳng (SCD) nên NG//(SCD)

b) Trong mặt phẳng (ABCD), gọi O là giao điểm của MI và DC.

Trong tam giác OCI, có NM//OC suy ra \(\frac{{IM}}{{IO}} = \frac{{IN}}{{IC}} = \frac{1}{3}\) (định lí Thalès).

Tam giác SIO có: \(\frac{{IM}}{{IO}} = \frac{{IG}}{{IS}} = \frac{1}{3}\), suy ra MG//OS (định lí Thalès đảo)

Mà \(OS \subset \left( {SDC} \right)\), MG không nằm trong mặt phẳng (SCD). Do đó, MG//(SCD).