Trang chủ Lớp 11 Toán lớp 11 Chuyên đề học tập Toán 11 - Kết nối tri thức Luyện tập 1 Bài 6 (trang 26, 27) Chuyên đề học tập...

Luyện tập 1 Bài 6 (trang 26, 27) Chuyên đề học tập Toán 11: Chứng minh rằng, phép vị tự V_(O, 1) là phép đồng nhất, phép vị tự V_o, -1 ; là phép đối xứng tâm O

Giải Luyện tập 1 Bài 6. Phép vị tự (trang 26, 27) – Chuyên đề học tập Toán 11 Kết nối tri thức. Hướng dẫn: Nếu phép vị tự tâm O tỉ số k \(\left( {k \ne 0} \right)\) lần lượt biến 2 điểm A.

Câu hỏi/Đề bài:

Chứng minh rằng, phép vị tự \({V_{(O,{\rm{ }}1)}}\) là phép đồng nhất, phép vị tự \({V_{\left( {o,-1} \right)}}\;\) là phép đối xứng tâm O.

Hướng dẫn:

Nếu phép vị tự tâm O tỉ số k \(\left( {k \ne 0} \right)\) lần lượt biến 2 điểm A, B thành 2 điểm A’, B’ thì \(A’B’ = \left| k \right|AB\)

Lời giải:

+ Phép vị tự \({V_{(O,{\rm{ }}1)}}\) biến điểm M thành điểm M’ thỏa mãn \(\overrightarrow {OM’} = \overrightarrow {OM} \). Khi đó M’ trùng với M. Do đó, phép vị tự \({V_{(O,{\rm{ }}1)}}\) là phép đồng nhất.

+ Phép vị tự \({V_{\left( {o,-1} \right)}}\;\) biến điểm M thành điểm M” thỏa mãn . Khi đó O là trung điểm của MM”. Do đó, M” là ảnh của M qua phép đối xứng tâm O hay phép vị tự \({V_{\left( {o,-1} \right)}}\;\) là phép đối xứng tâm O.