Trang chủ Lớp 10 Toán lớp 10 SGK Toán 10 - Kết nối tri thức Bài 7.19 trang 56 Toán 10 – Kết nối tri thức: Cho...

Bài 7.19 trang 56 Toán 10 – Kết nối tri thức: Cho Elip có phương trình x^2/36 + y^2/9 = 1. Tìm tiêu điểm và tiêu cự của elip

Tính \(c = \sqrt {{a^2} – {b^2}} \), + Tiêu điểm: \({F_1}\left( { – c;0} \right), {F_2}\left( {c;0} \right)\) + Tiêu cự: \({F_1}{F_2} = 2c\). Giải và trình bày phương pháp giải Giải bài 7.19 trang 56 SGK Toán 10 – Kết nối tri thức – Bài 22. Ba đường conic. Tìm tiêu điểm và tiêu cự của elip….

Đề bài/câu hỏi:

Cho Elip có phương trình \(\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1\). Tìm tiêu điểm và tiêu cự của elip.

Hướng dẫn:

Tính \(c = \sqrt {{a^2} – {b^2}} \),

+ Tiêu điểm: \({F_1}\left( { – c;0} \right),{F_2}\left( {c;0} \right)\)

+ Tiêu cự: \({F_1}{F_2} = 2c\).

Lời giải:

Ta có: \({a^2} = 36,{b^2} = 9 \Rightarrow c = \sqrt {36 – 9} = 3\sqrt 3 \) nên elip có hai tiêu điểm là \({F_1}\left( { – 3\sqrt 3 ;0} \right);{F_2}\left( {3\sqrt 3 ;0} \right)\) và tiêu cự là \({F_1}{F_2} = 2c = 6\sqrt 3 \).