Trang chủ Lớp 10 Toán lớp 10 SGK Toán 10 - Chân trời sáng tạo Hoạt động Khám phá 2 Bài 2 (trang 84) Toán 10: Một...

Hoạt động Khám phá 2 Bài 2 (trang 84) Toán 10: Một hộp có 10 tấm thẻ giống nhau được đánh số lần lượt từ 1 đến 10. Chọn ngẫu nhiên cùng lúc 3 thẻ

Đáp án Hoạt động Khám phá 2 Bài 2. Xác suất của biến cố (trang 84) – SGK Toán 10 Chân trời sáng tạo. Tham khảo: Bước 1: Xác định không gian mẫu.

Câu hỏi/Đề bài:

Một hộp có 10 tấm thẻ giống nhau được đánh số lần lượt từ 1 đến 10. Chọn ngẫu nhiên cùng lúc 3 thẻ. Tính xác suất của biến cố “Tích các số ghi trên ba thẻ đó là số chẵn”

Hướng dẫn:

Bước 1: Xác định không gian mẫu

Bước 2: Xác định số kết quả thuận lợi của biến cố

Bước 3: Tính xác xuất bằng công thức \(P\left( A \right) = \frac{{n(A)}}{{n(\Omega )}}\)

Lời giải:

Do các tấm thẻ giống nhau, nên lấy 3 tấm từ 10 tấm không quan tâm thứ tự có \(C_{10}^3 = 120\)cách, suy ra \(n\left( \Omega \right) = 120\)

Gọi A là biến cố “Tích các số ghi trên ba thẻ đó là số chẵn”

Để tích các số trên thẻ là số chẵn thì ít nhất có 1 thẻ là số chẵn

Để chọn ra 3 thẻ thuận lợi cho biến cố A ta có 3 khả năng

+) Khả năng 1: 3 thẻ chọn ra có 1 thẻ có số chẵn và 2 thẻ có số lẻ có \(5.C_5^2 = 50\) khả năng

+) Khả năng 2: 3 thẻ chọn ra có 2 thẻ có số chẵn và 1 thẻ có số lẻ có \(C_5^2.5 = 50\) khả năng

+) Khả năng 3: 3 thẻ chọn ra có đều là có số chắn có \(C_5^3 = 10\) khả năng

Suy ra \(n\left( A \right) = 50 + 50 + 10 = 110\)

Vậy xác suất của biến cố A là: \(P(A) = \frac{{110}}{{120}} = \frac{{11}}{{12}}\)