Trang chủ Lớp 10 Toán lớp 10 SBT Toán 10 - Chân trời sáng tạo Bài 3 trang 47 SBT toán 10 – Chân trời sáng tạo:...

Bài 3 trang 47 SBT toán 10 – Chân trời sáng tạo: Tìm giá trị của tham số a để trong khai triển a + x 1 + x ^4 có một số hạng 22x^2

Khai triển \({\left( {a + b} \right)^4} = C_4^0{a^4} + C_4^1{a^3}{b^1} + C_4^2{a^2}{b^2} + C_4^3{a^1}{b^3} + C_4^4{b^4}\. Lời giải bài tập, câu hỏi Giải bài 3 trang 47 sách bài tập toán 10 – Chân trời sáng tạo – Bài 3. Nhị thức newton. Tìm giá trị của tham số a để trong khai triển…

Đề bài/câu hỏi:

Tìm giá trị của tham số a để trong khai triển \(\left( {a + x} \right){\left( {1 + x} \right)^4}\) có một số hạng \(22{x^2}\)

Hướng dẫn:

Khai triển \({\left( {a + b} \right)^4} = C_4^0{a^4} + C_4^1{a^3}{b^1} + C_4^2{a^2}{b^2} + C_4^3{a^1}{b^3} + C_4^4{b^4}\)

rồi rút gọn biểu thức \(\left( {a + x} \right){\left( {1 + x} \right)^4}\), tìm hệ số của \({x^2}\) .

Lời giải:

+ Khai triển:

\(\begin{array}{l}{\left( {1 + x} \right)^4} = C_4^0{\left( x \right)^4} + C_4^1{\left( x \right)^3} + C_4^2{\left( x \right)^2} + C_4^3{\left( x \right)^1} + C_4^4{\left( x \right)^0}\\ = {x^4} + 4{x^3} + 6{x^2} + 4x + 1\end{array}\)

=>\(\left( {a + x} \right){\left( {1 + x} \right)^4} = \left( {a + x} \right)\left( {{x^4} + 4{x^3} + 6{x^2} + 4x + 1} \right)\)

\( = a{x^4} + {x^5} + 4a{x^3} + 4{x^4} + 6a{x^2} + 6{x^3} + 4ax + 4{x^2} + a + x\)

Ta có hệ số của \({x^2}\) là \(6a + 4 = 22 \Rightarrow a = 3\)