Phép thử có không gian mẫu gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là 1 biến cố Xác. Giải chi tiết Giải bài 1 trang 100 SBT toán 10 – Chân trời sáng tạo – Bài 2. Xác xuất của biến cố. Gieo một con xúc xắc 4 mặt cân đối và đồng chất ba lần….
Đề bài/câu hỏi:
Gieo một con xúc xắc 4 mặt cân đối và đồng chất ba lần. Tính xác suất của các biến cố:
a) “Tổng các số xuất hiện ở đỉnh phía trên của con xúc xắc trong 3 lần gieo lớn hơn 2”
b) “Có đúng một lần số xuất hiện ở đỉnh phía trên của con xúc xắc là 2”
Hướng dẫn:
Phép thử có không gian mẫu gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là 1 biến cố
Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \)
Lời giải:
a) Vì số chấm trên mỗi mặt của xúc xắc đều lớn hơn hoặc bằng 1, nên sau ba lần gieo, tổng số chấm sẽ luôn lớn hơn hoặc bằng 3 (hay lớn hơn 2).
Do đó biến cố A: “Tổng các số xuất hiện ở đỉnh phía trên của con xúc xắc trong 3 lần gieo lớn hơn 2” chắc chắn xảy ra. Vậy \(P\left( A \right) = 1\)
b) Gieo xúc xắc 3 lần. Mỗi lần, số xuất hiện ở đỉnh đều có 4 kết quả (1, 2, 3, 4)
Do đó \(n\left( \Omega \right) = 4.4.4 = 64\)
Gọi B là biến cố “Có đúng một lần số xuất hiện ở đỉnh phía trên của con xúc xắc là 2”
Bước 1: Chọn 1 lần trong 3 lần để xuất hiện số 2 ở đỉnh: có 3 cách
Bước 2: Trong 2 lần còn lại, số ở đỉnh đều có 3 kết quả có thể xảy ra (1, 3, 4)
=> có 3.3 =9 (kết quả)
Theo quy tắc nhân, ta có: \(n\left( B \right) = 3.3.3 = 27\)
\( \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{27}}{{64}}\)
Vậy xác xuất của biến cố B là \(\frac{{27}}{{64}}\)