Trang chủ Lớp 10 Toán lớp 10 SBT Toán 10 - Chân trời sáng tạo Bài 10 trang 23 SBT toán 10 – Chân trời sáng tạo:...

Bài 10 trang 23 SBT toán 10 – Chân trời sáng tạo: Cho tam giác ABC và ABD cùng vuông tại A như hình 3 có AB = x;BC = 5 và BD = 6

Trả lời Giải bài 10 trang 23 SBT toán 10 – Chân trời sáng tạo – Bài tập cuối Chương 7. Cho tam giác ABC và ABD cùng vuông tại A như hình 3 có \(AB = x;BC = 5\…

Đề bài/câu hỏi:

Cho tam giác ABC ABD cùng vuông tại A như hình 3 có \(AB = x;BC = 5\) và \(BD = 6\)

a) Biểu diễn độ dài cạnh AC AD theo x

b) Tìm x để chu vi của tam giác ABC là 12

c) Tìm x để \(AD = 2AC\)

Lời giải:

a) Áp dụng định lí pitago cho tam giác ABC ta có:

\(AC = \sqrt {B{C^2} – A{B^2}} = \sqrt {{5^2} – {x^2}} = \sqrt {25 – {x^2}} \)

Áp dụng định lí pitago cho tam giác ABD ta có:

\(AD = \sqrt {B{D^2} – A{B^2}} = \sqrt {{6^2} – {x^2}} = \sqrt {36 – {x^2}} \)

b) Ta có: \(AB + AC + BC = 12\)

\(\begin{array}{l} \Leftrightarrow x + \sqrt {25 – {x^2}} + 5 = 12\\ \Leftrightarrow \sqrt {25 – {x^2}} = 7 – x\\ \Rightarrow 25 – {x^2} = 49 – 14x + {x^2}\\ \Rightarrow 2{x^2} – 14x + 24 = 0\end{array}\)

\( \Rightarrow x = 3\) hoặc \(x = 4\)

Thay hai giá trị vừa tìm được vào phương trình ban đầu ta thấy cả hai giá trị đều thỏa mãn

Vậy khi \(x = 3\) hoặc \(x = 4\) thì chu vi của tam giác ABC là 12

c) Ta có: \(AD = 2AC\)

\(\begin{array}{l} \Leftrightarrow \sqrt {36 – {x^2}} = 2\sqrt {25 – {x^2}} \\ \Rightarrow 36 – {x^2} = 4\left( {25 – {x^2}} \right)\\ \Rightarrow 3{x^2} – 64 = 0\end{array}\)

\( \Rightarrow x = – \frac{{8\sqrt 3 }}{3}\) (loại vì \(x > 0\)) hoặc \(x = \frac{{8\sqrt 3 }}{3}\)

Thay \(x = \frac{{8\sqrt 3 }}{3}\) vào phương trình ban đầu ta thấy thỏa mãn

Vậy \(x = \frac{{8\sqrt 3 }}{3}\) thì \(AD = 2AC\)