Hướng dẫn giải Câu 2 Bài 2. Ứng dụng của hệ phương trình bậc nhất ba ẩn (trang 20) – Chuyên đề học tập Toán 10 Chân trời sáng tạo. Gợi ý: Bước 1: Lập hệ phương trình.
Câu hỏi/Đề bài:
Để mở rộng sản xuất, một công ty đã vay 800 triệu đồng từ ba ngân hàng A, B và C, với lãi suất cho vay theo năm lần lượt là 6%, 8% và 9%. Biết rằng tổng số tiền lãi năm đầu tiên công ty phải trả cho ba ngân hàng là 60 triệu đồng và số tiền lãi công ty trả cho hai ngân hàng A và C là bằng nhau. Tính số tiền công ty đã vay từ mỗi ngân hàng.
Hướng dẫn:
Bước 1: Lập hệ phương trình
+ Chọn ẩn và đặt điều kiện cho ẩn
+ Biểu diễn các đại lượng chưa biết theo ẩn và đại lượng đã biết
+ Lập các phương trình biểu thị mối quan hệ giữa các đại lượng
Bước 2: Giải hệ phương trình
Bước 3: Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thích hợp với bài toán và kết luận.
Lời giải:
Gọi số tiền công ty đã vay từ mỗi ngân hàng A, B, C lần lượt là x, y, z (đơn vị triệu đồng) \(\left( {x,y,z > 0} \right)\)
Tổng số tiền vay là 800 triệu đồng nên \(x + y + z = 800\)
tổng số tiền lãi năm đầu tiên công ty phải trả cho ba ngân hàng là 60 triệu đồng nên: \(6\% .x + 8\% .y + 9\% z = 60\)
Số tiền lãi năm đầu phải trả cho ngân hàng A và C là bằng nhau nên ta có: \(6\% .x = 9\% z\)
Thu gọn ta được hệ phương trình \(\left\{ \begin{array}{l}x + y + z = 800\\0,06x + 0,08y + 0,09z = 60\\0,06x – 0,09z = 0\end{array} \right.\)
Dùng máy tính cầm tay giải hệ, ta được \(x = 300,y = 300,z = 200\)
Vậy công ty đó đã vay 300 triệu đồng từ ngân hàng A, 300 triệu đồng từ ngân hàng B và 200 triệu đồng từ ngân hàng C.