Giải chi tiết Câu 5 trang 125 Vở thực hành Toán 9 – Giải câu hỏi trắc nghiệm. Gợi ý: Tính bán kính R của hình tròn đi qua tâm.
Câu hỏi/Đề bài:
Một mặt phẳng đi qua tâm mặt cầu cắt mặt cầu theo một đường tròn có diện tích \(9\pi \;c{m^2}\). Thể tích của mặt cầu bằng:
A. \(972\pi \;c{m^3}\).
B. \(36\pi \;c{m^3}\).
C. \(6\pi \;c{m^3}\).
D. \(81\pi \;c{m^3}\).
Hướng dẫn:
+ Tính bán kính R của hình tròn đi qua tâm.
+ Bán kính hình cầu bằng bán kính đường tròn đi qua tâm hình cầu.
+ Thể tích của hình cầu bán kính R là: \(V = \frac{4}{3}\pi {R^3}\).
Lời giải:
Vì hình tròn đi qua tâm mặt cầu có diện tích \(9\pi \;c{m^2}\) nên ta có: \(\pi {R^2} = 9\pi \) nên bán kính hình tròn đi qua tâm là \(R = 3\). Vì bán kính hình cầu bằng bán kính đường tròn đi qua tâm mặt cầu nên \(R = 3\).
Thể tích mặt cầu là: \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {.3^3} = 36\pi \left( {c{m^3}} \right)\)
Chọn B