\(\sqrt {{a^2}} = \left| a \right|\) với mọi số thực a. + Với A, B là các biểu thức không âm. Giải chi tiết Giải bài 7 trang 57 vở thực hành Toán 9 – Luyện tập chung trang 55. Không dùng MTCT, tính giá trị biểu thức sau:…
Đề bài/câu hỏi:
Không dùng MTCT, tính giá trị biểu thức sau:
\(A = \frac{{\sqrt 2 + \sqrt 3 + \sqrt 6 + \sqrt 8 + \sqrt {16} }}{{\sqrt 1 + \sqrt 2 }} – \left( {\sqrt 1 + \sqrt 2 + \sqrt 3 + \sqrt 4 } \right)\).
Hướng dẫn:
+ \(\sqrt {{a^2}} = \left| a \right|\) với mọi số thực a.
+ Với A, B là các biểu thức không âm, ta có \(\sqrt A .\sqrt B = \sqrt {AB} \).
Lời giải:
Ta có: \(\sqrt {16} = 4 = \sqrt 4 + \sqrt 4 \) nên
\(\sqrt 2 + \sqrt 3 + \sqrt 6 + \sqrt 8 + \sqrt {16} \\ = \left( {\sqrt 2 + \sqrt 3 + \sqrt 4 } \right) + \left( {\sqrt 4 + \sqrt 6 + \sqrt 8 } \right)\\= \left( {\sqrt 2 + \sqrt 3 + \sqrt 4 } \right) + \sqrt 2 \left( {\sqrt 2 + \sqrt 3 + \sqrt 4 } \right) \\= \left( {\sqrt 2 + \sqrt 3 + \sqrt 4 } \right)\left( {1 + \sqrt 2 } \right)\)
Từ đó
\(\frac{{\sqrt 2 + \sqrt 3 + \sqrt 6 + \sqrt 8 + \sqrt {16} }}{{\sqrt 1 + \sqrt 2 }} = \sqrt 2 + \sqrt 3 + \sqrt 4 \)
Suy ra
\(A = \frac{{\sqrt 2 + \sqrt 3 + \sqrt 6 + \sqrt 8 + \sqrt {16} }}{{\sqrt 1 + \sqrt 2 }} – \left( {\sqrt 1 + \sqrt 2 + \sqrt 3 + \sqrt 4 } \right)\\ = \sqrt 2 + \sqrt 3 + \sqrt 4 – \left( {\sqrt 1 + \sqrt 2 + \sqrt 3 + \sqrt 4 } \right) = – 1\)