Hướng dẫn giải Câu hỏi Hoạt động 3 trang 69 SGK Toán 9 Kết nối tri thức – Bài 11. Tỉ số lượng giác của góc nhọn. Hướng dẫn: Chú ý trong tam giác đều, đường cao vừa là đường phân giác vừa là đường trung tuyến.
Câu hỏi/Đề bài:
Xét tam giác đều ABC có cạnh bằng 2a.
a) Tính đường cao AH của tam giác ABC (H.4.7b) .
b) Tính \(\sin {30^0};\cos {30^0};\sin {60^0};\cos {60^0}.\)
c) Tính \(\tan {30^0};\cot {30^0};\tan {60^0};\cot {60^0}.\)
Hướng dẫn:
Chú ý trong tam giác đều, đường cao vừa là đường phân giác vừa là đường trung tuyến. Từ đó ta tính được cạnh AH và các tỉ số lượng giác liên quan.
Lời giải:
a) Tam giác ABC đều có đường cao AH nên AH cũng là đường trung tuyến của tam giác. Do đó ta có H là trung điểm của BC nên \(BH = HC = \frac{{BC}}{2} = \frac{{2a}}{2} = a\)
Xét tam giác ABH vuông tại H, ta có: \(A{B^2} = A{H^2} + H{B^2}\) (Đjnh lý Pythagore)
Suy ra \({\left( {2a} \right)^2} = A{H^2} + {a^2}\) nên \(A{H^2} = 3a\) hay \(AH = a\sqrt 3 \)
b) Tam giác ABC đều nên \(\widehat A = \widehat B = \widehat C = {60^0}\)
Nên \(\cos {60^0} = \cos \widehat B = \frac{{BH}}{{AB}} = \frac{a}{{2a}} = \frac{1}{2};\) \(\sin {60^0} = \sin \widehat B = \frac{{AH}}{{AB}} = \frac{{a\sqrt 3 }}{{2a}} = \frac{{\sqrt 3 }}{2}\)
Tam giác ABC đều nên AH vừa là đường cao vừa là đường phân giác của góc A, do đó \(\widehat {BAH} = \widehat {CAH} = \frac{{\widehat {BAC}}}{2} = \frac{{{{60}^0}}}{2} = {30^0}\)
\(\sin {30^0} = \sin \widehat {BAH} = \frac{{BH}}{{AB}} = \frac{a}{{2a}} = \frac{1}{2};\) \(\cos {30^0} = \cos \widehat {BAH} = \frac{{AH}}{{AB}} = \frac{{a\sqrt 3 }}{{2a}} = \frac{{\sqrt 3 }}{2}\)
c) \(\tan {30^0} = \tan \widehat {BAH} = \frac{{BH}}{{AH}} = \frac{a}{{a\sqrt 3 }} = \frac{{\sqrt 3 }}{3}\)
\(\cot {30^0} = \cot \widehat {BAH} = \frac{{AH}}{{BH}} = \frac{{a\sqrt 3 }}{a} = \sqrt 3 \)
\(\tan {60^0} = \tan \widehat {ABH} = \frac{{AH}}{{BH}} = \frac{{a\sqrt 3 }}{a} = \sqrt 3 \)
\(\cot {60^0} = \tan \widehat {ABH} = \frac{{BH}}{{AH}} = \frac{a}{{a\sqrt 3 }} = \frac{{\sqrt 3 }}{3}\)