Đường tròn nội tiếp tam giác đều cạnh a có tâm là trọng tâm của tam giác và bán kính bằng \(\frac{{a\sqrt 3 }}{6}\. Trả lời Giải bài tập 4 trang 69 SGK Toán 9 tập 2 – Chân trời sáng tạo – Bài 1. Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác. Tính diện tích tam giác đều có bán kính đường tròn nội tiếp bằng 1 cm….
Đề bài/câu hỏi:
Tính diện tích tam giác đều có bán kính đường tròn nội tiếp bằng 1 cm.
Hướng dẫn:
Đường tròn nội tiếp tam giác đều cạnh a có tâm là trọng tâm của tam giác và bán kính bằng \(\frac{{a\sqrt 3 }}{6}\) để suy ra cạnh tam giác đều rồi tính diện tích.
Lời giải:
Ta có bán kính đường tròn nội tiếp tam giác đều là r = \(\frac{{a\sqrt 3 }}{6}\).
(Với a là độ dài cạnh của tam giác đều)
Mà r = 1 cm suy ra \(\frac{{a\sqrt 3 }}{6} = 1\) hay a = \(\frac{6}{{\sqrt 3 }} = 2\sqrt 3 \) (cm).
Vì tâm của đường tròn nội tiếp tam giác là giao điểm của ba đường phân giác suy ra ba đường phân giác cũng đồng thời là ba đường trung trực của tam giác.
Đường cao của tam giác đều là: \(\frac{{a\sqrt 3 }}{6} = 1\) hay a = \(\frac{6}{{\sqrt 3 }} = 2\sqrt 3 \) (cm).
Diện tích tam giác đều là:
\(S = \frac{1}{2}.a.h = \frac{{2\sqrt 3 .3}}{2} = 3\sqrt 3 \) (cm2).