Trang chủ Lớp 9 Toán lớp 9 SGK Toán 9 - Cánh diều Câu hỏi Hoạt động 4 trang 115: Toán 9 Cánh diều Cho...

Câu hỏi Hoạt động 4 trang 115: Toán 9 Cánh diều Cho góc AIB nội tiếp đường tròn tâm O đường kính IK sao cho tâm O nằm trong góc đó (Hình 57)

Hướng dẫn giải Câu hỏi Hoạt động 4 trang 115 – Bài 4. Góc ở tâm. Góc nội tiếp. Gợi ý: Dựa vào các kiến thức đã học về đường tròn để xác định.

Câu hỏi/Đề bài:

SGK Toán 9 Cánh diều

Cho góc \(AIB\) nội tiếp đường tròn tâm \(O\) đường kính \(IK\) sao cho tâm \(O\) nằm trong góc đó (Hình 57).

a) Các cặp góc \(\widehat {OAI}\) và \(\widehat {OIA};\widehat {OBI}\) và \(\widehat {OIB}\) có bằng nhau hay không?

b) Tính các tổng \(\widehat {AOI} + 2\widehat {OIA},\widehat {BOI} + 2\widehat {OIB}\).

c) Tính các tổng \(\widehat {AOI} + \widehat {AOK},\widehat {BOI} + \widehat {BOK}\).

d) So sánh \(\widehat {AOK}\) và \(2\widehat {OIA},\widehat {BOK}\) và \(2\widehat {OIB},\widehat {AOB}\) và \(2\widehat {AIB}\).

Hướng dẫn:

Dựa vào các kiến thức đã học về đường tròn để xác định.

Lời giải:

a) Do \(OI = OA = R\) nên tam giác \(IOA\) cân tại \(O\) suy ra \(\widehat {OAI} = \widehat {OIA}\)

Do \(OI = OB = R\) nên tam giác \(IOB\) cân tại \(O\) suy ra \(\widehat {OBI} = \widehat {OIB}\)

b) Xét tam giác \(AOI\) cân tại \(O\) có:

\(\widehat {AOI} + \widehat {OIA} + \widehat {OAI} = 180^\circ \Rightarrow \widehat {AOI} + \widehat {OIA} + \widehat {OIA} = 180^\circ \Rightarrow \widehat {AOI} + 2\widehat {OIA} = 180^\circ \)

Xét tam giác \(BOI\) cân tại \(O\) có:

\(\widehat {BOI} + \widehat {OIB} + \widehat {OBI} = 180^\circ \Rightarrow \widehat {BOI} + \widehat {OIB} + \widehat {OIB} = 180^\circ \Rightarrow \widehat {BOI} + 2\widehat {OIB} = 180^\circ \)

c) Ta có: \(\widehat {AOI} + \widehat {AOK} = 180^\circ \) (hai góc kề bù)

\(\widehat {BOI} + \widehat {BOK} = 180^\circ \) (hai góc kề bù)

d) Do \(\widehat {AOI} + 2\widehat {OIA} = 180^\circ \) lại có \(\widehat {AOI} + \widehat {AOK} = 180^\circ \) nên \(2\widehat {OIA} = \widehat {AOK}\)

Do \(\widehat {BOI} + 2\widehat {OIB} = 180^\circ \) lại có \(\widehat {BOI} + \widehat {BOK} = 180^\circ \) nên \(2\widehat {OIB} = \widehat {BOK}\)

Ta có: \(\widehat {OIA} + \widehat {OIB} = \widehat {AIB} \Rightarrow 2\left( {\widehat {OIA} + \widehat {OIB}} \right) = 2\widehat {AIB} \Rightarrow 2\widehat {OIA} + 2\widehat {OIB} = 2\widehat {AIB}\)

Mà \(2\widehat {OIA} = \widehat {AOK},2\widehat {OIB} = \widehat {BOK}\) nên \(\widehat {AOK} + \widehat {BOK} = 2\widehat {AIB} \Rightarrow \widehat {AOB} = 2\widehat {AIB}\)