Trang chủ Lớp 9 Toán lớp 9 SGK Toán 9 - Cánh diều Bài tập 6 trang 78 Toán 9 tập 2 – Cánh diều:...

Bài tập 6 trang 78 Toán 9 tập 2 – Cánh diều: Cho tứ giác nội tiếp ABCD có hai đường chéo AC và BD cắt nhau tại I. a) Hai góc ABD và ACD có bằng nhau hay không? Vì sao?

Lý thuyết: Trong một đường tròn, hai góc nội tiếp cùng chắn 1 cung thì bằng nhau. b) Chỉ ra \(\Delta AIB\backsim \Delta IDC\. Hướng dẫn trả lời Giải bài tập 6 trang 78 SGK Toán 9 tập 2 – Cánh diều – Bài 2. Tứ giác nội tiếp đường tròn. Cho tứ giác nội tiếp ABCD có hai đường chéo AC và BD cắt nhau tại I….

Đề bài/câu hỏi:

Cho tứ giác nội tiếp ABCD có hai đường chéo AC và BD cắt nhau tại I.

a) Hai góc ABD và ACD có bằng nhau hay không? Vì sao?

b) Chứng minh \(\Delta AIB\backsim \Delta IDC\) và IA.IC = IB.ID.

Hướng dẫn:

a) Lý thuyết: Trong một đường tròn, hai góc nội tiếp cùng chắn 1 cung thì bằng nhau.

b) Chỉ ra \(\Delta AIB\backsim \Delta IDC\) theo trường hợp g.g.

Lời giải:

a) Do tứ giác ABCD nội tiếp đường tròn nên \(\widehat {ACD} = \widehat {ABD}\)(cùng chắn cung AD).

b) Xét tam giác AIB và tam giác DIC có:

\(\widehat {AIB} – \widehat {DIC}\)(đối đỉnh)

\(\widehat {ACD} = \widehat {ABD}\)(cmt)

Nên \(\Delta AIB\backsim \Delta IDC\)(g.g)

Suy ra \(\frac{{IA}}{{ID}} = \frac{{IB}}{{IC}}\) hay IA.IC = IB.ID (đpcm).