Bước 1: Tính giá niêm yết của gói du lịch loại A cho chuyến Hà Nội đi Đà Lạt và chuyến Hà Nội đi Huế. Hướng dẫn cách giải/trả lời Giải bài 32 trang 22 sách bài tập toán 9 – Cánh diều tập 1 – Bài tập cuối Chương 1. Một công ty du lịch tiến hành giảm giá cho gói du lịch loại A trong các dịp lễ….
Đề bài/câu hỏi:
Một công ty du lịch tiến hành giảm giá cho gói du lịch loại A trong các dịp lễ.
– Tuần lễ kích cầu du lịch: Hà Nội đi Đà Lạt giảm 15% giá niêm yết, Hà Nội đi Huế giảm 10% giá niêm yết;
– Ngày lễ Quốc tế Lao động: Hà Nội đi Đà Lạt giảm 20% giá niêm yết, Hà Nội đi Huế giảm 15% giá niêm yết.
Trong tuần lễ kích cầu du lịch, nếu 3 gói du lịch loại A cho chuyến Hà Nội đi Đà Lạt và 2 gói du lịch loại A cho chuyển Hà Nội đi Huế thì khách hàng phải trả 15 000 000 đồng. Trong ngày lễ Quốc tế Lao động, nếu 2 gói du lịch loại A cho chuyến Hà Nội đi Đà Lạt và 3 gói du lịch loại A cho chuyến Hà Nội đi Huế thì khách hàng phải trả 14 810 000 đồng. Tính giá niêm yết của gói du lịch loại A cho chuyến Hà Nội đi Đà Lạt và chuyến Hà Nội đi Huế.
Hướng dẫn:
Bước 1: Tính giá niêm yết của gói du lịch loại A cho chuyến Hà Nội đi Đà Lạt và chuyến Hà Nội đi Huế (\(x,y > 0\)).
Bước 2: Biểu diễn số tiền mỗi chuyến sau khi giảm giá trong tuần lễ kích cầu du lịch và ngày lễ Quốc tế Lao động.
Bước 3: Lập phương trình biểu diễn tổng số tiền khi mua các gói trong tuần lễ kích cầu du lịch.
Bước 4: Lập phương trình biểu diễn tổng số tiền khi mua các gói trong ngày lễ Quốc tế Lao động.
Bước 5: Giải hệ phương trình và đối chiếu điều kiện.
Lời giải:
Gọi giá niêm yết của gói du lịch loại A cho chuyến Hà Nội đi Đà Lạt và chuyến Hà Nội đi Huế lần lượt là x,y (triệu đồng, \(x,y > 0\)).
– Tuần lễ kích cầu du lịch: Hà Nội đi Đà Lạt giảm 15% giá niêm yết, Hà Nội đi Huế giảm 10% giá niêm yết nên giá mỗi chuyến còn lại lần lượt là \(x – 15\% x = 0,85x{;^{}}y – 10\% y = 0,9y.\)
Do 3 gói du lịch loại A cho chuyến Hà Nội đi Đà Lạt và 2 gói du lịch loại A cho chuyển Hà Nội đi Huế thì khách hàng phải trả 15 000 000 đồng nên ta có phương trình \(3.0,85x + 2.0,9y = 15\) hay \(2,55x + 1,8y = 15\).
– Ngày lễ Quốc tế Lao động: Hà Nội đi Đà Lạt giảm 20% giá niêm yết, Hà Nội đi Huế giảm 15% giá niêm yết nên giá mỗi chuyến còn lại lần lượt là \(x – 20\% x = 0,8x{;^{}}y – 15\% y = 0,85y.\)
Do 2 gói du lịch loại A cho chuyến Hà Nội đi Đà Lạt và 3 gói du lịch loại A cho chuyến Hà Nội đi Huế thì khách hàng phải trả 14 810 000 đồng nên ta có phương trình \(2.0,8x + 3.0,85y = 14,81\) hay \(1,6x + 2,55y = 14,81\).
Ta lập được hệ phương trình \(\left\{ \begin{array}{l}2,55x + 1,8y = 15\left( 1 \right)\\1,6x + 2,55y = 14,81\left( 2 \right)\end{array} \right.\)
Nhân 2 vế của phương trình (1) với 1,6 và nhân 2 vế của phương trình (2) với 2,55 ta được hệ phương trình \(\left\{ \begin{array}{l}4,08x + 2,88y = 24\left( 3 \right)\\4,08x + 6,5025y = 37,7655\left( 4 \right)\end{array} \right.\)
Trừ 2 vế của (3) và (4) ta được \(3,6225y = 13,7655\) hay \(y = 3,8\).
Thay \(y = 3,8\) vào (1), ta được \(2,55x + 1,8.3,8 = 15\), do đó \(2,55x = 8,16\), hay \(x = 3,2\).
Ta thấy \(x = 3,2\), \(y = 3,8\) thỏa mãn điều kiện. Vậy giá niêm yết của gói du lịch loại A cho chuyến Hà Nội đi Đà Lạt và chuyến Hà Nội đi Huế lần lượt là 3,2 và 3,8 triệu đồng.