Trang chủ Lớp 9 Toán lớp 9 SBT Toán 9 - Cánh diều Bài 26 trang 134 SBT toán 9 – Cánh diều tập 2:...

Bài 26 trang 134 SBT toán 9 – Cánh diều tập 2: Một khối gỗ gồm một hình cầu (C) bán kính R và một hình nón (N) có bán kính đường tròn đáy và đường sinh lần lượt là r (cm)

Dựa vào: Diện tích mặt cầu: \(S = 4\pi {R^2}\). Hướng dẫn giải Giải bài 26 trang 134 sách bài tập toán 9 – Cánh diều tập 2 – Bài 3. Hình cầu. Một khối gỗ gồm một hình cầu (C) bán kính R và một hình nón (N) có bán kính đường…

Đề bài/câu hỏi:

Một khối gỗ gồm một hình cầu (C) bán kính R và một hình nón (N) có bán kính đường tròn đáy và đường sinh lần lượt là r (cm), l (cm) thoả mãn 2R = l và 2l = 3r. Biết tổng diện tích mặt cầu (C) và diện tích toàn phần của hình nón (N) là 171π cm2. Tính diện tích của mặt cầu (C) (theo đơn vị centimét vuông và làm tròn kết quả đến hàng đơn vị).

Hướng dẫn:

Dựa vào: Diện tích mặt cầu: \(S = 4\pi {R^2}\).

Lời giải:

Từ 2R = l và 2l = 3r, suy ra \(R = \frac{l}{2},r = \frac{{2l}}{3}.\)

Diện tích mặt cầu (C) là:

\(4\pi {R^2} = 4\pi .{\left( {\frac{l}{2}} \right)^2} = 4\pi .\frac{l}{4} = \pi {l^2}\).

Diện tích toàn phần của hình nón (N) là:

\(\pi rl + \pi {r^2} = \pi .\frac{{2l}}{3}.l + \pi .{\left( {\frac{{2l}}{3}} \right)^2} \)

\(= \frac{2}{3}\pi {l^2} + \frac{4}{9}\pi {l^2} = \frac{{10\pi {l^2}}}{9}\).

Do tổng diện tích mặt cầu (C) và diện tích toàn phần của hình nón (N) là 171π cm2 nên:

\(\pi {l^2} + \frac{{10\pi {l^2}}}{9} = 171\pi \) hay 9πl2 = 171π.9

Suy ra l2 = 81 nên l = 9 cm (do l > 0).

Khi đó, bán kính mặt cầu (C) là:

\(R = \frac{l}{2} = \frac{9}{2} = 4,5\) (cm).

Vậy diện tích của mặt cầu (C) là:

4πR2 = 4π.(4,5)2 = 81π ≈ 81.3,14 = 254,34 ≈ 254 (cm2).