Sử dụng quy tắc nhân hai đa thức: Muốn nhân một đa thức với một đa thức. Trả lời Giải bài 6 trang 18 vở thực hành Toán 8 – Bài 4. Phép nhân đa thức. Chứng minh đẳng thức sau:…
Đề bài/câu hỏi:
Chứng minh đẳng thức sau:
\(\left( {2x + y} \right)\left( {2{x^2}\; + xy-{y^2}} \right) = \left( {2x-y} \right)\left( {2{x^2}\; + 3xy + {y^2}} \right)\).
Hướng dẫn:
Sử dụng quy tắc nhân hai đa thức: Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
Lời giải:
Vế trái:
\(\begin{array}{l}\left( {2x + y} \right)\left( {2{x^2}\; + xy-{y^2}} \right)\\ = \left( {4{x^3}\; + 2{x^2}y-2x{y^2}\;} \right) + \left( {2{x^2}y + x{y^2}\;-{y^3}} \right)\\ = 4{x^3}\; + 4{x^2}y-x{y^2}\;-{y^3}.\end{array}\)
Vế phải:
\(\begin{array}{l}\left( {2x-y} \right)\left( {2{x^2}\; + 3xy + {y^2}} \right)\\ = \left( {4{x^3}\; + 6{x^2}y + 2x{y^{2\;}}} \right)-\left( {2{x^2}y + 3x{y^2}\; + {y^3}} \right)\\ = 4{x^3}\; + \left( {6{x^2}y-2{x^2}y} \right) + \left( {2x{y^{2\;}}-3x{y^2}} \right)-{y^3}\\ = 4{x^3}\; + 4{x^2}y-x{y^2}\;-{y^3}.\end{array}\)
So sánh hai kết quả, ta có điều phải chứng minh.