Liệt kê các kết quả có thể, kết quả thuận lợi cho biến cố. Tính xác suất của biến cố đó. Vận dụng kiến thức giải Giải bài 5 trang 76 vở thực hành Toán 8 tập 2 – Luyện tập chung trang 74. Có hai túi I và II. Túi I đựng 3 tấm thẻ được đánh số 2, 3, 4….
Đề bài/câu hỏi:
Có hai túi I và II. Túi I đựng 3 tấm thẻ được đánh số 2, 3, 4. Túi II đựng 2 tấm thẻ được đánh số 5, 6. Từ mỗi túi I và II, rút ngẫu nhiên một tấm thẻ. Tính xác suất các biến cố sau:
a) A: “Hai số ghi trên hai tấm thẻ chênh nhau 2 đơn vị”;
b) B: “Hai số ghi trên hai tấm thẻ chênh nhau lớn hơn 2 đơn vị”;
c) C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”;
d) D: “Tổng hai số ghi trên hai tấm thẻ là một số nguyên tố”.
Hướng dẫn:
Liệt kê các kết quả có thể, kết quả thuận lợi cho biến cố.
Tính xác suất của biến cố đó.
Lời giải:
Tập hợp kết quả có thể là cặp số (a, b), với a nhận các giá trị 2; 3; 4, b nhận các giá trị 5; 6. Có 6 kết quả có thể là đồng khả năng, đó là (2; 5), (2; 6), (3; 5), (3; 6), (4; 5), (4; 6).
a) Có 2 kết quả thuận lợi cho biến cố A, đó là (3; 5), (4; 6). Vậy xác suất của biến cố A là P(A) = \(\frac{2}{6} = \frac{1}{3}\).
b) Có 3 kết quả thuận lợi cho biến cố B, đó là (2; 5), (2; 6), (3; 6). Vậy xác suất của biến cố B là P(B) = \(\frac{3}{6} = \frac{1}{2}\).
c) Có 5 kết quả thuận lợi cho biến cố C, đó là (2; 5), (2; 6), (3; 6), (4, 5); ( 4; 6). Vậy xác suất của biến cố C là P(C) = \(\frac{5}{6}\).
d) Có 1 kết quả thuận lợi cho biến cố D, đó là (2; 5). Vậy xác suất của biến cố D là P(D) = \(\frac{1}{6}\).