Trang chủ Lớp 8 Toán lớp 8 Vở thực hành Toán 8 Bài 2 trang 55 vở thực hành Toán 8 tập 2: Cho...

Bài 2 trang 55 vở thực hành Toán 8 tập 2: Cho hàm số bậc nhất y = (3 − m)x + 2m + 1. Tìm các giá trị của m để đồ thị của hàm số đã cho là

Vì đồ thị đi qua điểm (1; 2) nên ta thay giá trị x, y vào công thức hàm số dã cho để tìm ra. Hướng dẫn giải Giải bài 2 trang 55 vở thực hành Toán 8 tập 2 – Luyện tập chung trang 54. Cho hàm số bậc nhất y = (3 − m)x + 2m + 1….

Đề bài/câu hỏi:

Cho hàm số bậc nhất y = (3 − m)x + 2m + 1. Tìm các giá trị của m để đồ thị của hàm số đã cho là:

a) Đường thẳng đi qua điểm (1;2);

b) Đường thẳng cắt đường thẳng y = x + 1 tại một điểm nằm trên trục tung.

Hướng dẫn:

a) Vì đồ thị đi qua điểm (1; 2) nên ta thay giá trị x, y vào công thức hàm số dã cho để tìm ra giá trị m.

b) Vì đường thẳng cắt đường thẳng y = x + 1 tại một điểm nằm trên trục tung khi a ≠ a′ và b = b′

Lời giải:

Điều kiện: m ≠ 3.

a) Đường thẳng đi qua điểm (1; 2) nên ta có:

2 = (3 – m).1 + 2m + 1, suy ra m = -2.

Giá trị này của m thỏa mãn điều kiện m ≠ 3. Vậy giá trị cần tìm là m = -2.

b) Vì đường thẳng y = x + 1 cắt trục tung tại điểm (0, 1), nên để đường thẳng đã cho cắt đường thẳng y = x + 1 tại một điểm nằm trên trục tung thì đường thẳng y = (3 – m)x + 2m + 1 phải đi qua điểm (0; 1). Từ đó suy ra

1 = (3 – m).0 + 2m + 1 hay m = 0.

So sánh với điều kiện của m ta thấy m = 0 thỏa mãn điều kiện.

Vậy giá trị cần tìm là m = 0.