Đáp án Hoạt động 2 Bài 5. Phép chia đa thức cho đơn thức (trang 22, 23) – SGK Toán 8 Kết nối tri thức. Hướng dẫn: Đơn thức A chia hết cho đơn thức B nếu mỗi biến của B đều là biến của A với.
Câu hỏi/Đề bài:
Với mỗi trường hợp sau, hãy đoán xem đơn thức A có chia hết cho đơn thức B không; nếu chia hết, hãy tìm thương của phép chia A cho B và giải thích cách làm:
a) \(A = 6{x^3}y,B = 3{x^2}y\)
b) \(A = {x^2}y,B = x{y^2}\)
Hướng dẫn:
Đơn thức A chia hết cho đơn thức B nếu mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A.
Muốn chia đơn thức A cho đơn thức B, ta làm như sau:
+ Chia hệ số của đơn thức A cho hệ số của đơn thức B.
+ Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B.
+ Nhân các kết quả tìm được với nhau.
Lời giải:
a) Đơn thức A chia hết cho đơn thức B:
\(A:B = 6{x^3}y:3{x^2}y = \left( {6:3} \right).\left( {{x^3}:{x^2}} \right).\left( {y:y} \right) = 2x\)
b) Đơn thức A không chia hết cho đơn thức B vì số mũ của biến y trong B lớn hơn số mũ của biến y trong A.