Chứng minh ΔBOE và ΔCOD có: \(\widehat {C{\rm{D}}O} = \widehat {BEO}\) và \(\widehat {EBO} = \widehat {DCO}\. Gợi ý giải Giải bài 9.42 trang 110 SGK Toán 8 tập 2 – Kết nối tri thức – Bài tập cuối chương 9. Cho hình 9.74, biết rằng…
Đề bài/câu hỏi:
Cho hình 9.74, biết rằng \(\widehat {AB{\rm{D}}} = \widehat {AC{\rm{E}}}\). Chứng minh rằng ΔABD ∽ ΔACE và ΔBOE ∽ ΔCOD
Hướng dẫn:
Chứng minh ΔBOE và ΔCOD có: \(\widehat {C{\rm{D}}O} = \widehat {BEO}\) và \(\widehat {EBO} = \widehat {DCO}\)
Lời giải:
– Xét tam giác ABD và tam giác ACE có \(\widehat {AB{\rm{D}}} = \widehat {AC{\rm{E}}}\), góc A chung
=> ΔABD ∽ ΔACE (g.g)
– Vì ΔABD ∽ ΔACE
=> \(\widehat {A{\rm{D}}B} = \widehat {A{\rm{E}}C}\)
=> \(\widehat {C{\rm{D}}O} = \widehat {BEO}\) (1)
– Có \(\widehat {AB{\rm{D}}} = \widehat {AC{\rm{E}}}\)
Mà \(\widehat {AB{\rm{D}}} + \widehat {EBO} = {180^o}\)
\(\widehat {AC{\rm{E}}} + \widehat {DCO} = {180^o}\)
=> \(\widehat {EBO} = \widehat {DCO}\) (2)
Từ (1) và (2) => ΔBOE ∽ ΔCOD (g.g)