Áp dụng định lí Thalès trong tam giác ABC, ta có các tỉ lệ thức. Áp dụng dãy tỉ số bằng nhau ta được đpcm. Hướng dẫn cách giải/trả lời Giải bài 4.3 trang 80 SGK Toán 8 tập 1 – Kết nối tri thức – Bài 15. Định lí Thales trong tam giác. Cho ∆ABC, từ điểm D trên cạnh BC,…
Đề bài/câu hỏi:
Cho ∆ABC, từ điểm D trên cạnh BC, kẻ đường thẳng song song với AB cắt AC tại F và kẻ đường thẳng song song với AC cắt AB tại E.
Chứng minh rằng: \(\dfrac{{A{\rm{E}}}}{{AB}} + \dfrac{{AF}}{{AC}} = 1\)
Hướng dẫn:
Áp dụng định lí Thalès trong tam giác ABC, ta có các tỉ lệ thức. Áp dụng dãy tỉ số bằng nhau ta được đpcm.
Lời giải:
Áp dụng định lí Thalès, ta có:
• Vì DE // AC nên \(\dfrac{{A{\rm{E}}}}{{AB}} = \dfrac{{C{\rm{D}}}}{{BC}}\)
• Vì DF // AC nên \(\dfrac{{AF}}{{AC}} = \dfrac{{B{\rm{D}}}}{{BC}}\)
Khi đó, \(\dfrac{{A{\rm{E}}}}{{AB}} + \dfrac{{AF}}{{AC}} = \dfrac{{C{\rm{D}}}}{{BC}} + \dfrac{{B{\rm{D}}}}{{BC}} = 1\) (đpcm).