BD là đường phân giác của tam giác ABC, áp dụng tính chất của đường phân giác, tính độ dài đoạn thẳng AD. Phân tích, đưa ra lời giải Giải bài 4.22 trang 89 SGK Toán 8 tập 1 – Kết nối tri thức – Bài tập cuối chương 4. Cho tam giác ABC cân tại A có AB = 15 cm…
Đề bài/câu hỏi:
Cho tam giác ABC cân tại A có AB = 15 cm, BC = 10 cm, đường phân giác trong của góc B cắt AC tại D. Khi đó, đoạn thẳng AD có độ dài là
A. 3 cm.
B. 6 cm.
C. 9 cm.
D. 12 cm.
Hướng dẫn:
BD là đường phân giác của tam giác ABC, áp dụng tính chất của đường phân giác, tính độ dài đoạn thẳng AD.
Lời giải:
Đáp án đúng là: C
Vì tam giác ABC cân tại A nên AB = AC = 15 cm.
Theo đề bài, BD là tia phân giác của \(\widehat {ABC}\), áp dụng tính chất đường phân giác vào tam giác ABC, ta có:
\(\dfrac{{AB}}{{BC}} = \dfrac{{A{\rm{D}}}}{{C{\rm{D}}}} = \dfrac{{15}}{{10}} = \dfrac{3}{2}\) suy ra \(\dfrac{{A{\rm{D}}}}{3} = \dfrac{{C{\rm{D}}}}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{{A{\rm{D}}}}{3} = \dfrac{{C{\rm{D}}}}{2} = \dfrac{{A{\rm{D}} + C{\rm{D}}}}{{3 + 2}} = \dfrac{{AC}}{5} = \dfrac{{15}}{5} = 3\)
Do đó AD = 3 . 3 = 9 (cm).
Vậy AD = 9 cm.