Chứng minh MN, NP, PQ là các đường trung bình của tam giác ABC. Gợi ý giải Giải bài 4.20 trang 89 SGK Toán 8 tập 1 – Kết nối tri thức – Bài tập cuối chương 4. Cho tam giác ABC có chu vi là 32 cm….
Đề bài/câu hỏi:
Cho tam giác ABC có chu vi là 32 cm. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC. Chu vi của tam giác MNP là
A. 8 cm.
B. 64 cm.
C. 30 cm.
D. 16 cm.
Hướng dẫn:
Chứng minh MN, NP, PQ là các đường trung bình của tam giác ABC, sử dụng tính chất đường trung bình của các cạnh trong tam giác MNP.
Lời giải:
Đáp án đúng là: D
• Vì M, N lần lượt là trung điểm của các cạnh AB, AC nên MN là đường trung bình của tam giác ABC suy ra \(MN = \dfrac{1}{2}BC\)
• Vì N, P lần lượt là trung điểm của các cạnh AC, BC nên NP là đường trung bình của tam giác ABC suy ra \(NP = \dfrac{1}{2}AB\)
• Vì M, P lần lượt là trung điểm của các cạnh AB, BC nên NP là đường trung bình của tam giác ABC suy ra \(MP = \dfrac{1}{2}AC\)
Chu vi tam giác ABC bằng: AB + BC + CA = 32 (cm).
Chu vi tam giác MNP bằng:
\(\begin{array}{l}MN + NP + MP = \dfrac{1}{2}BC + \dfrac{1}{2}AB + \dfrac{1}{2}AC\\ = \dfrac{1}{2}\left( {AB + BC + CA} \right) = \dfrac{1}{2}.32 = 16(cm)\end{array}\)
Vậy chu vi tam giác MNP bằng 16 cm.