Trang chủ Lớp 8 Toán lớp 8 SGK Toán 8 - Cánh diều Bài 10 trang 96 Toán 8 – Cánh diều: Cho tam giác...

Bài 10 trang 96 Toán 8 – Cánh diều: Cho tam giác ABC có M, N là hai điểm lần lượt thuộc các cạnh AB, AC sao cho MNparallel BC. Gọi I, P

Dựa vào định lý Thales để suy ra các cặp tỉ số bằng nhau. Lời giải bài tập, câu hỏi Giải bài 10 trang 96 SGK Toán 8 – Cánh diều – Bài tập cuối chương 8. Cho tam giác ABC có M, N là hai điểm lần lượt thuộc các cạnh AB,…

Đề bài/câu hỏi:

Cho tam giác ABC có M, N là hai điểm lần lượt thuộc các cạnh AB, AC sao cho \(MN\parallel BC\). Gọi I, P, Q lần lượt là giao điểm của BN và CM, AI và MN, AI và BC. Chứng minh:

a) \(\frac{{MP}}{{BQ}} = \frac{{PN}}{{QC}} = \frac{{AP}}{{AQ}}\)

b) \(\frac{{MP}}{{QC}} = \frac{{PN}}{{BQ}} = \frac{{IP}}{{IQ}}\)

Hướng dẫn:

Dựa vào định lý Thales để suy ra các cặp tỉ số bằng nhau.

Lời giải:

a) Vì \(MP\parallel BQ\) nên ta có \(\frac{{MP}}{{BQ}} = \frac{{AP}}{{AQ}}\) (hệ quả của định lý Thales)

Vì \(PN\parallel QC\) nên ta có \(\frac{{PN}}{{QC}} = \frac{{AP}}{{AQ}}\) (hệ quả của định lý Thales)

\( \Rightarrow \frac{{MP}}{{BQ}} = \frac{{PN}}{{QC}} = \frac{{AP}}{{AQ}}\)

b) Vì \(MP\parallel QC\) nên \(\frac{{MP}}{{QC}} = \frac{{IP}}{{IQ}}\) (Hệ quả của định lý Thales)

Vì \(PN\parallel BQ\) nên \(\frac{{PN}}{{BQ}} = \frac{{IP}}{{IQ}}\) (Hệ quả của định lý Thales)

\( \Rightarrow \frac{{MP}}{{QC}} = \frac{{PN}}{{BQ}} = \frac{{IP}}{{IQ}}\)