Trang chủ Lớp 8 Toán lớp 8 SBT Toán 8 - Chân trời sáng tạo Bài 9 trang 31 SBT toán 8 – Chân trời sáng tạo...

Bài 9 trang 31 SBT toán 8 – Chân trời sáng tạo tập 2: Giải các phương trình sau: a) 9x + 5/6 = 1 – 6 + 3x/8; b) x + 1/4 = 1/2 + 2x + 1/5

Sử dụng kiến thức giải phương trình bậc nhất để tìm nghiệm: Để giải một phương trình. Phân tích, đưa ra lời giải Giải bài 9 trang 31 sách bài tập toán 8 – Chân trời sáng tạo tập 2 – Bài tập cuối chương 6. Giải các phương trình sau: a) \(\frac{{9x + 5}}{6} = 1 – \frac{{6 + 3x}}{8}\);…

Đề bài/câu hỏi:

Giải các phương trình sau:

a) \(\frac{{9x + 5}}{6} = 1 – \frac{{6 + 3x}}{8}\);

b) \(\frac{{x + 1}}{4} = \frac{1}{2} + \frac{{2x + 1}}{5}\);

c) \(\frac{{2\left( {x + 1} \right)}}{3} = \frac{3}{2} – \frac{{1 – 2x}}{4}\);

d) \(\frac{x}{5} + \frac{{2x + 1}}{6} = \frac{{2\left( {x – 2} \right)}}{3}\).

Hướng dẫn:

Sử dụng kiến thức giải phương trình bậc nhất để tìm nghiệm: Để giải một phương trình, ta thường sử dụng các quy tắc biến đổi sau:

+ Chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó (Quy tắc chuyển vế);

+ Nhân cả hai vế với cùng một số khác 0 (Quy tắc nhân với một số);

+ Chia cả hai vế cho cùng một số khác 0 (Quy tắc chia cho một số).

Áp dụng các quy tắc trên, phương trình \(ax + b = 0\) (với \(a \ne 0\)) được giải như sau:

\(ax + b = 0\)

\(ax = – b\)

\(x = \frac{{ – b}}{a}\)

Lời giải:

a) \(\frac{{9x + 5}}{6} = 1 – \frac{{6 + 3x}}{8}\)

\(\frac{{4\left( {9x + 5} \right)}}{{24}} = \frac{{24}}{{24}} – \frac{{3\left( {6 + 3x} \right)}}{{24}}\)

\(36x + 20 = 24 – 18 – 9x\)

\(36x + 9x = 24 – 18 – 20\)

\(45x = – 14\)

\(x = \frac{{ – 14}}{{45}}\)

Vậy phương trình đã cho có nghiệm là \(x = \frac{{ – 14}}{{45}}\)

b) \(\frac{{x + 1}}{4} = \frac{1}{2} + \frac{{2x + 1}}{5}\)

\(\frac{{5\left( {x + 1} \right)}}{{20}} = \frac{{10}}{{20}} + \frac{{4\left( {2x + 1} \right)}}{{20}}\)

\(5x + 5 = 10 + 8x + 4\)

\(5x – 8x = 14 – 5\)

\( – 3x = 9\)

\(x = – 3\)

Vậy phương trình đã cho có nghiệm là \(x = – 3\)

c) \(\frac{{2\left( {x + 1} \right)}}{3} = \frac{3}{2} – \frac{{1 – 2x}}{4}\)

\(\frac{{8\left( {x + 1} \right)}}{{12}} = \frac{{18}}{{12}} – \frac{{3\left( {1 – 2x} \right)}}{{12}}\)

\(8x + 8 = 18 – 3 + 6x\)

\(8x – 6x = 15 – 8\)

\(2x = 7\)

\(x = \frac{7}{2}\)

Vậy phương trình đã cho có nghiệm là \(x = \frac{7}{2}\)

d) \(\frac{x}{5} + \frac{{2x + 1}}{6} = \frac{{2\left( {x – 2} \right)}}{3}\)

\(\frac{{6x}}{{30}} + \frac{{5\left( {2x + 1} \right)}}{{30}} = \frac{{20\left( {x – 2} \right)}}{{30}}\)

\(6x + 10x + 5 = 20x – 40\)

\(16x – 20x = – 40 – 5\)

\( – 4x = – 45\)

\(x = \frac{{45}}{4}\)

Vậy phương trình đã cho có nghiệm là \(x = \frac{{45}}{4}\)