Trang chủ Lớp 8 Toán lớp 8 SBT Toán 8 - Chân trời sáng tạo Bài 7 trang 65 SBT toán 8 – Chân trời sáng tạo:...

Bài 7 trang 65 SBT toán 8 – Chân trời sáng tạo: Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BD, DC, CA. Chứng minh rằng tứ giác MNPQ là hình bình hành

Sử dụng dấu hiệu nhận biết hình bình hành để chứng minh. Hướng dẫn cách giải/trả lời Giải bài 7 trang 65 sách bài tập toán 8 – Chân trời sáng tạo – Bài 4. Hình bình hành – Hình thoi. Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BD, DC, CA….

Đề bài/câu hỏi:

Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BD, DC, CA. Chứng minh rằng tứ giác MNPQ là hình bình hành.

Hướng dẫn:

Sử dụng dấu hiệu nhận biết hình bình hành để chứng minh: Tứ giác có một cặp cạnh đối song song và bằng nhau là hình bình hành.

Lời giải:

Xét bài toán phụ: Cho tam giác ABC có M, N lần lượt là trung điểm của cạnh AB, AC. Lấy P đối xứng với M qua N. Chứng minh rằng MN//BC, \(MN = \frac{{BC}}{2}\)

Chứng minh:

Tam giác AMN và tam giác CPN có:

\(NA = NC\left( {gt} \right),\widehat {{N_1}} = \widehat {{N_2}}\) (hai góc đối đỉnh), \(NM = NP\) (gt)

Do đó, \(\Delta ANM = \Delta CNP\left( {c – g – c} \right)\)

Suy ra \(\widehat {{A_1}} = \widehat {{C_1}}\), mà hai góc này ở vị trí so le trong nên CP//AB hay CP//BM

Lại có: \(CP = AM = BM\)

Tứ giác BMPC có: CP//BM, \(CP = BM\) nên tứ giác BMPC là hình bình hành. Do đó, MN//BC, \(MN = \frac{{BC}}{2}\)

Giải bài 7

Xét tam giác ABD có M, N lần lượt là trung điểm của AB, BD (giả thiết) nên theo bài toán phụ, ta có: \(MN = \frac{{AD}}{2}\), MN//AD.

Xét tam giác ACD có P, Q lần lượt là trung điểm của DC, AC (giả thiết) nên theo bài toán phụ, ta có: \(PQ = \frac{{AD}}{2}\), PQ//AD.

Xét tứ giác MNPQ có MN//PQ (cùng song song với AD), \(MN = PQ\left( { = \frac{{AD}}{2}} \right)\) nên tứ giác MNPQ là hình bình hành.