Trang chủ Lớp 8 Toán lớp 8 SBT Toán 8 - Cánh diều Bài 7 trang 60 SBT toán 8 – Cánh diều: Cho ABCD...

Bài 7 trang 60 SBT toán 8 – Cánh diều: Cho ABCD là hình bình hành. Một đường thẳng d đi qua A cắt BD, BC, DC lần lượt tại E, K, G (Hình 11). Chứng minh: a) AE^2 = EK. EG

Hệ quả của định lí Thales: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì. Lời giải bài tập, câu hỏi Giải bài 7 trang 60 sách bài tập toán 8 – Cánh diều – Bài 1. Định lí Thalès trong tam giác. Cho \(ABCD\) là hình bình hành. Một đường thẳng \(d\) đi qua \(A\) cắt \(BD,BC,DC\) lần lượt tại \(E,K,G\…

Đề bài/câu hỏi:

Cho \(ABCD\) là hình bình hành. Một đường thẳng \(d\) đi qua \(A\) cắt \(BD,BC,DC\) lần lượt tại \(E,K,G\) (Hình 11). Chứng minh:

a) \(A{E^2} = EK.EG\)

b) \(\frac{1}{{AE}} = \frac{1}{{AK}} + \frac{1}{{AG}}\)

Hướng dẫn:

Hệ quả của định lí Thales: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.

Lời giải:

a) Do \(AD//BK,AB//DG\) nên theo hệ quả của định lí Thales, ta có:

\(\frac{{EK}}{{AE}} = \frac{{EB}}{{ED}} = \frac{{AE}}{{EG}}\) hay \(\frac{{EK}}{{AE}} = \frac{{AE}}{{EG}}\)

→ \(A{E^2} = EK.EG\).

b) Ta có:

\(\frac{{AE}}{{AK}} = \frac{{DE}}{{DB}};\frac{{AE}}{{AG}} = \frac{{BE}}{{BD}}\)

Nên \(\frac{{AE}}{{AK}} + \frac{{AE}}{{AG}} = \frac{{DE}}{{DB}} + \frac{{BE}}{{BD}} = \frac{{BD}}{{BD}} = 1\)

→ \(AE.\left( {\frac{1}{{AK}} + \frac{1}{{AG}}} \right) = 1\)

Vậy \(\frac{1}{{AE}} = \frac{1}{{AK}} = \frac{1}{{AG}}\).