Tam giác \(A’B’C’\) gọi là đồng dạng với tam giác \(ABC\) nếu: \(\widehat{A’}=\widehat{A}, \widehat{B’}=\widehat{B}, \widehat{C’}=\widehat{C}\) ; \(\frac{A’B’}{AB}=\frac{B’C’}{BC}=\frac{A’C’}{AC}\). Kí hiệu là \(\Delta A’B’C’\backsim \Delta ABC\). Vận dụng kiến thức giải Giải bài 69 trang 85 sách bài tập toán 8 – Cánh diều – Bài tập cuối Chương 8. Cho tam giác \(ABC\) cân tại \(A,AB=10\)cm, \(BC=12\)cm. Gọi \(I\…
Đề bài/câu hỏi:
Cho tam giác \(ABC\) cân tại \(A,AB=10\)cm, \(BC=12\)cm. Gọi \(I\) là giao điểm của các đường phân giác của tam giác \(ABC\). Tính độ dài \(AI\).
Hướng dẫn:
Tam giác \(A’B’C’\) gọi là đồng dạng với tam giác \(ABC\) nếu:
\(\widehat{A’}=\widehat{A},\widehat{B’}=\widehat{B},\widehat{C’}=\widehat{C}\) ; \(\frac{A’B’}{AB}=\frac{B’C’}{BC}=\frac{A’C’}{AC}\).
Kí hiệu là \(\Delta A’B’C’\backsim \Delta ABC\).
Tỉ số các cạnh tương ứng \(\frac{A’B’}{AB}=\frac{B’C’}{BC}=\frac{C’A’}{CA}=k\) gọi là tỉ số đồng dạng.
Lời giải:
Gọi \(H\) là giao điểm của hai đường thẳng \(AI\) và \(BC\). Do tam giác \(ABC\) cân tại \(A\) nên đường phân giác \(AI\) cũng là đường cao, đường trung tuyến. Do đó \(BH=\frac{BC}{2}=6\)cm. Tam giác \(AHB\) vuông tại \(H\) nên \(A{{H}^{2}}=A{{B}^{2}}-B{{H}^{2}}={{10}^{2}}-{{6}^{2}}=64\), suy ra \(AH=8\)cm. Ta có \(\frac{AI}{IH}=\frac{AB}{BH}\) suy ra \(\frac{AI}{AI+IH}=\frac{AB}{AB+BH}\) hay \(\frac{AI}{8}=\frac{10}{10+6}=\frac{5}{8}\). Vậy \(AI=5\)cm.