Trang chủ Lớp 7 Toán lớp 7 SGK Toán 7 - Chân trời sáng tạo Bài 3 trang 63 Toán 7 tập 2 – Chân trời sáng...

Bài 3 trang 63 Toán 7 tập 2 – Chân trời sáng tạo: Cho tam giác ABC cân tại A có ∠ A = 56^o(Hình 15) a) Tính∠ B, ∠ C b) Gọi M, N lần lượt là trung điểm của AB, AC

Sử dụng định lí tổng 3 góc trong tam giác và tính chất 2 góc đáy tam giác cân b) Chứng minh AM = AN. Gợi ý giải Giải bài 3 trang 63 SGK Toán 7 tập 2 – Chân trời sáng tạo – Bài 3. Tam giác cân. Cho tam giác ABC cân tại A có…

Đề bài/câu hỏi:

Cho tam giác ABC cân tại A có \(\widehat A = {56^o}\)(Hình 15)

a) Tính\(\widehat B\), \(\widehat C\)

b) Gọi M, N lần lượt là trung điểm của AB, AC. Chứng minh rằng tam giác AMN cân.

c) Chứng minh rằng MN // BC

Hướng dẫn:

a) Sử dụng định lí tổng 3 góc trong tam giác và tính chất 2 góc đáy tam giác cân

b) Chứng minh AM = AN

c) Sử dụng tính chất góc đồng vị

Lời giải:

a) Theo đề bài ta có tam giác ABC cân ở A và \(\widehat A = {56^o}\)

Mà \( \Rightarrow \widehat A + \widehat B + \widehat C = {180^o}\)

\( \Rightarrow \widehat B = \widehat C = ({180^o} – {56^o}):2 = {62^o}\)

b) Vì tam giác ABC cân tại A nên AB = AC ( định nghĩa tam giác cân )

Mà M, N là trung điểm của AB, AC

Nên AM = AN

Xét tam giác AMN có AM = AN nên AMN là tam giác cân tại A

\( \Rightarrow \widehat M = \widehat N = ({180^o} – {56^o}):2 = {62^o}\)

c) Vì \(\widehat {AMN}=\widehat {ABC}\) (cùng bằng 62°)

Mà chúng ở vị trí đồng vị nên MN⫽BC