Trang chủ Lớp 7 Toán lớp 7 SGK Toán 7 - Cánh diều Bài 4 trang 92 Toán 7 tập 2 – Cánh diều: Cho...

Bài 4 trang 92 Toán 7 tập 2 – Cánh diều: Cho Hình 67 có ∠ AHD = ∠ BKC = 90^°, DH = CK, ∠ DAB = ∠ CBA. Chứng minh AD = BC

Chứng minh tam giác AHD bằng tam giác BKC. Hướng dẫn giải Giải bài 4 trang 92 SGK Toán 7 tập 2 – Cánh diều – Bài 6. Trường hợp bằng nhau thứ ba của tam giác: góc- cạnh – góc. Cho Hình 67 có…

Đề bài/câu hỏi:

Cho Hình 67 có \(\widehat {AHD} = \widehat {BKC} = 90^\circ ,DH = CK,\widehat {DAB} = \widehat {CBA}\). Chứng minh AD = BC.

Hướng dẫn:

Chứng minh tam giác AHD bằng tam giác BKC.

Lời giải:

Ta có: \(\widehat {DAB} = \widehat {CBA}\)

Mà \(\widehat {DAB} +\widehat {HAD} =180^0; \widehat {CBA}= \widehat {KBC}\) (2 góc kề bù)

\(\Rightarrow \widehat {HAD} = \widehat {KBC}\)

Mà tổng ba góc trong tam giác bằng 180° và \(\widehat {AHD} = \widehat {BKC} = 90^\circ ,\widehat {HAD} = \widehat {KBC}\) nên \(\widehat {ADH} = \widehat {BCK}\).

Xét tam giác AHD và tam giác BKC có:

\(\widehat {AHD} = \widehat {BKC}\);

HD = KC;

\(\widehat {ADH} = \widehat {BCK}\).

Vậy \(\Delta AHD = \Delta BKC\)(g.c.g) nên AD = BC ( 2 cạnh tương ứng)