Trang chủ Lớp 7 Toán lớp 7 Sách bài tập Toán 7 - Kết nối tri thức Giải Bài 9.12 trang 52 SBT toán 7 – Kết nối tri...

Giải Bài 9.12 trang 52 SBT toán 7 – Kết nối tri thức: Tam giác ABC có AB = 2cm, BC = 3cm. Đặt CA = b (cm) a) Chứng minh rằng 1 < b < 5 b) Giả sử rằng với 1

a)Áp dụng: BC – AB < CA < BC + AB b)Áp dụng mối liên hệ giữa cạnh và góc trong tam giác. Trả lời Giải Bài 9.12 trang 52 sách bài tập toán 7 – Kết nối tri thức với cuộc sống – Bài 33. Quan hệ giữa ba cạnh của tam giác. Tam giác ABC có AB = 2cm, BC = 3cm. Đặt CA = b (cm) a)Chứng minh rằng 1 <…

Đề bài/câu hỏi:

Tam giác ABC có AB = 2cm, BC = 3cm. Đặt CA = b (cm)

a)Chứng minh rằng 1 < b < 5

b) Giả sử rằng với 1 < b < 5, có tam giác ABC thoả mãn AB = 2cm, BC = 3 cm, CA = b (cm). Với mỗi tam giác đó, hãy sắp xếp ba góc A, B, C theo thứ tự từ bé đến lớn.

Hướng dẫn:

a)Áp dụng: BC – AB < CA < BC + AB

b)Áp dụng mối liên hệ giữa cạnh và góc trong tam giác.

Chia 3 trường hợp: \(1 < b \le 2\); \(2 < b \le 3\);\(3 < b < 5\).

Lời giải:

a)

Áp dụng bất đẳng thức tam giác cho tam giác ABC:

BC – AB < CA < BC + AB

=>3 – 2 < b < 3 + 2

=>1 < b < 5 (đpcm)

b)

AB = 2 cm, BC = 3 cm, AC = b

Với \(1 < b \le 2\) \( \Rightarrow b \le AB < BC \Rightarrow \widehat B \le \widehat C < \widehat A\)(Mối liên hệ giữa cạnh và góc trong tam giác)

Với \(2 < b \le 3 \Rightarrow AB < CA \le BC \Rightarrow \widehat C < \widehat B \le \widehat A\)

Với \(3 < b < 5 \Rightarrow AB < BC < CA \Rightarrow \widehat C < \widehat A < \widehat B\)