Trang chủ Lớp 6 Toán lớp 6 Sách bài tập Toán 6 - Cánh diều Giải Bài 75 trang 25 SBT Toán 6 – Cánh diều: Chứng...

Giải Bài 75 trang 25 SBT Toán 6 – Cánh diều: Chứng tỏ rằng: a) Tổng của 2 020 số lẻ bất kì luôn chia hết cho 2; b) 1111 +2222+ 3333 +4444+5555 không chia hết cho 2

Tồng 2 số lẻ bất kì là số chẵn Tích 2 số lẻ bất kì là 1 số lẻ Tích 1 số chẵn với số. Lời giải Giải Bài 75 trang 25 sách bài tập Toán 6 – Cánh diều – Bài 8: Dấu hiệu chia hết cho 2 – cho 5. Chứng tỏ rằng: a) Tổng của 2 020 số lẻ bất kì luôn chia hết cho 2;…

Đề bài/câu hỏi:

Chứng tỏ rằng:

a) Tổng của 2 020 số lẻ bất kì luôn chia hết cho 2;

b) 1111 +2222+ 3333 +4444+5555 không chia hết cho 2;

c) 2 +22+23+…+259+260+561 chia hết cho 5

Hướng dẫn:

Tồng 2 số lẻ bất kì là số chẵn

Tích 2 số lẻ bất kì là 1 số lẻ

Tích 1 số chẵn với số bất kì là số chẵn

Tính 2 +22+23+…+259+260 , tổng này chia hết cho 5

Lời giải:

a) Vì tổng 2 số lẻ bất kì là số chẵn nên tổng của 2 020 số lẻ bất kì là số chẵn

Vậy tổng của 2 020 số lẻ bất kì luôn chia hết cho 2

b) Vì tích 2 số lẻ bất kì là số lẻ nên 1111; 3333; 5555 là các số lẻ. Do đó tổng 1111+ 3333+5555 cũng là số lẻ.

Vì tích 2 số chẵn là số chẵn nên 2222; 4444 là số chẵn. Do đó, tổng 2222 + 4444 là số chẵn.

Vậy tổng 1111 +2222+ 3333 +4444+5555 là 1 số lẻ nên không chia hết cho 2

c) Ta có: 2 +22+23+…+259+260

= (2+22+23+24) + (25+26+27+28) +…+ (257 + 258+259+260)

= (2+22+23+24) + 24. (2+22+23+24) +…+ 256. (2+22+23+24)

= (2+22+23+24). (1 +24+…+ 256)

=30. (1 +24+…+ 256)

Vì 30 chia hết cho 5 nên 30. (1 +24+…+ 256) cũng chia hết cho 5.

Do đó 2 +22+23+…+259+260 chia hết cho 5

Mà 561 cũng chia hết cho 5 nên 2 +22+23+…+259+260+561 chia hết cho 5